Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Angew Chem Int Ed Engl ; 61(51): e202212719, 2022 Dec 19.
Article En | MEDLINE | ID: mdl-36268788

With the progressive defossilization of our industry, hydrogen (H2 ) has been identified as a central molecule to store renewable electricity. In this context, ammonia (NH3 ) is now rapidly emerging as a promising hydrogen carrier for the future. This game change indirectly impacts the field of fine chemistry where hydrogenation reactions are widely deployed. In particular, the possibility of performing hydrogenation reactions using ammonia directly instead of hydrogen has become highly desirable but it remains a very difficult scientific task, which we address in this communication. Here we show that the N-H bond of NH3 can be cleaved within cavitation bubbles, generated by ultrasonic irradiation at a high frequency, leading to the in situ formation of a diimide, which then induces the hydrogenation of alkenes. Advantageously, this work does not involve any transition metal and releases N2 as a sole co-product.

2.
Angew Chem Int Ed Engl ; 60(48): 25230-25234, 2021 Nov 22.
Article En | MEDLINE | ID: mdl-34448339

Hydrazine is a chemical of utmost importance in our society, either for organic synthesis or energy use. The direct conversion of NH3 to hydrazine is highly appealing, but it remains a very difficult task because the degradation of hydrazine is thermodynamically more feasible than the cleavage of the N-H bond of NH3 . As a result, any catalyst capable of activating NH3 will thus unavoidably decompose N2 H4 . Here we show that cavitation bubbles, created by ultrasonic irradiation of aqueous NH3 at a high frequency, act as microreactors to activate and convert NH3 to NH species, without assistance of any catalyst, yielding hydrazine at the bubble-liquid interface. The compartmentation of in-situ-produced hydrazine in the bulk solution, which is maintained close to 30 °C, advantageously prevents its thermal degradation, a recurrent problem faced by previous technologies. This work also points towards a path to scavenge . OH radicals by adjusting the NH3 concentration.

3.
J Am Chem Soc ; 141(37): 14772-14779, 2019 09 18.
Article En | MEDLINE | ID: mdl-31450888

We report here, and rationalize, a synergistic effect between a non-noble metal oxide catalyst (CuO) and high-frequency ultrasound (HFUS) on glucose oxidation. While CuO and HFUS are able to independently oxidize glucose to gluconic acid, the combination of CuO with HFUS led to a dramatic change of the reaction selectivity, with glucuronic acid being formed as the major product. By means of density functional theory (DFT) calculations, we show that, under ultrasonic irradiation of water at 550 kHz, the surface lattice oxygen of a CuO catalyst traps H· radicals stemming from the sonolysis of water, making the ring-opening of glucose energetically unfavorable and leaving a high coverage of ·OH radical on the CuO surface, which selectively oxidizes glucose to glucuronic acid. This work also points toward a path to optimize the size of the catalyst particle for an ultrasonic frequency that minimizes the damage to the catalyst, resulting in its successful reuse.

4.
Front Chem ; 6: 74, 2018.
Article En | MEDLINE | ID: mdl-29623273

Here, we investigated that the mechanocatalytic depolymerization of cellulose in the presence of Aquivion, a sulfonated perfluorinated ionomer. Under optimized conditions, yields of water soluble sugars of 90-97% were obtained using Aquivion PW98 and PW66, respectively, as a solid acid catalyst. The detailed characterization of the water soluble fraction revealed (i) the selective formation of oligosaccharides with a DP up to 11 and (ii) that depolymerization and reversion reactions concomitantly occurred during the mechanocatalytic process, although the first largely predominated. More importantly, we discussed on the critical role of water contained in Aquivion and cellulose on the efficiency of the mechanocatalytic process.

5.
Sci Rep ; 7: 40650, 2017 01 13.
Article En | MEDLINE | ID: mdl-28084448

This systematic experimental investigation reveals that high-frequency ultrasound irradiation (550 kHz) induced oxidation of D-glucose to glucuronic acid in excellent yield without assistance of any (bio)catalyst. Oxidation is induced thanks to the in situ production of radical species in water. Experiments show that the dissolved gases play an important role in governing the nature of generated radical species and thus the selectivity for glucuronic acid. Importantly, this process yields glucuronic acid instead of glucuronate salt typically obtained via conventional (bio)catalyst routes, which is of huge interest in respect of downstream processing. Investigations using disaccharides revealed that radicals generated by high frequency ultrasound were also capable of promoting tandem hydrolysis/oxidation reactions.


Glucose/chemistry , Glucuronic Acid/chemistry , Oxidation-Reduction/radiation effects , Ultrasonic Waves , Carbohydrates/chemistry , Catalysis/radiation effects , Chromatography, High Pressure Liquid , Gas Chromatography-Mass Spectrometry , Solutions
6.
Angew Chem Int Ed Engl ; 54(31): 8928-33, 2015 Jul 27.
Article En | MEDLINE | ID: mdl-26119659

An integrated experimental and computational investigation reveals that surface lattice oxygen of copper oxide (CuO) nanoleaves activates the formyl C-H bond in glucose and incorporates itself into the glucose molecule to oxidize it to gluconic acid. The reduced CuO catalyst regains its structure, morphology, and activity upon reoxidation. The activity of lattice oxygen is shown to be superior to that of the chemisorbed oxygen on the metal surface and the hydrogen abstraction ability of the catalyst is correlated with the adsorption energy. Based on the present investigation, it is suggested that surface lattice oxygen is critical for the oxidation of glucose to gluconic acid, without further breaking down the glucose molecule into smaller fragments, because of C-C cleavage. Using CuO nanoleaves as catalyst, an excellent yield of gluconic acid is also obtained for the direct oxidation of cellobiose and polymeric cellulose, as biomass substrates.


Biomass , Copper/chemistry , Oxygen/chemistry , Catalysis , Nanoparticles , Oxidation-Reduction
...