Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
3.
Anal Chim Acta ; 953: 1-9, 2017 02 08.
Article En | MEDLINE | ID: mdl-28010737

A new supramolecular solvent (SUPRAS) made up of aggregates of gemini surfactant was introduced. A microextraction method, based on the SUPRAS followed with high performance liquid chromatography-ultraviolet detection, was applied for the determination of parabens in cosmetics, beverages and water samples. A SUPRAS is a nano-structured liquid made up of surfactant aggregates synthesized through a self-assembly process. In the present work, a new gemini-based SUPRAS was introduced. Methyl paraben (MP), ethyl paraben (EP), and propyl paraben (PP) were extracted on the basis of π-cation and Van der Waals interactions into the SUPRAS. The parameter affecting the extraction of target analytes (i.e., the amount of surfactant and volume of propanol as major components comprising the supramolecular solvent, sample solution pH, salt addition, ultrasonic and centrifugation time) were investigated and optimized by one-variable-at-a-time method. Under the optimum conditions, the preconcentration factors of 98, 143 and 156 were obtained for MP, EP and PP, respectively. The linearity ranged from 0.5 to 0.7-200 µg L-1 with the correlation of determination of (R2) ≥ 0.9938. The gemini-based SUPRAS followed by HPLC-UV has been found to have excellent detection sensitivity with a limit of detection (LOD, S/N = 3) of 0.5 µg L-1 for EP and PP, and 0.7 µg L-1 for MP. Good recoveries over the range of 92.0-108.3% assured the accuracy of the amount of parabens distinguished in the non-spiked samples.


Liquid Phase Microextraction , Propanols/chemistry , Solvents/chemistry , Surface-Active Agents/chemistry , Beverages/analysis , Chromatography, High Pressure Liquid , Cosmetics/analysis , Drinking Water/analysis , Wastewater/analysis
4.
Mikrochim Acta ; 185(1): 62, 2017 12 18.
Article En | MEDLINE | ID: mdl-29594581

The authors describe a zinc-based metal-organic framework/polyethersulfone nanocomposite (TMU-4/PES) coating deposited on a stainless steel wire via a single-phase inversion method. The nanocomposite represents a novel fiber coating for headspace solid-phase microextraction of organophosphorous pesticides (OPPs) from environmental water and soil samples. The synergistic effects of the high surface area and unique porous structure of TMU-4 as well as the rich π electron stacking and mechanical attributes of the PES polymer result in a high affinity of the composite for OPPs. Following thermal desorption, the OPPS were quantified by gas chromatography with a nitrogen-phosphorus detector. The preparation of the coating is simple, and the coated fiber is highly stable and reusable in that it can be used in about 100 consecutive extractions/desorption cycles. A central composite design was used for assessing the effect of the experimental parameters on the extraction process. Under optimized conditions, the limits of detection are in the 5-8 ng mL-1 range for the OPPs diazinon, fenitrothion, malathion and chlorpyrifos. The average repeatability and fiber-to-fiber reproducibility are 6.5% and 8.7%, respectively. The method was applied to the trace determination of OPPs in (spiked) water and soil samples where it gave good recovery (88-108%) and satisfactory reproducibility (5.9-10.1%). Graphical abstract A zinc-based metal-organic framework/polyethersulfone nanocomposite coating was prepared on a stainless steel wire via phase inversion. It was used as a novel fiber coating for headspace solid phase microextraction of organophosphorous pesticides from water and soil samples.

5.
J Chromatogr A ; 1465: 38-46, 2016 Sep 23.
Article En | MEDLINE | ID: mdl-27592610

In the current study, a graphene/polyvinylchloride nanocomposite was successfully coated on a stainless steel substrate by a simple dip coating process and used as a novel headspace solid phase microextraction (HS-SPME) fiber for the extraction of phthalate esters (PEs) from drinking water and edible vegetable oil samples. The prepared SPME fibers exhibited high extractability for PEs (due to the dominant role of π-π stacking interactions and hydrophobic effects) yielding good sensitivity and precision when followed by a gas chromatograph with a flame ionization detector (GC-FID). The optimization strategy of the extraction process was carried out using the response surface method based on a central composite design. The developed method gave a low limit of detection (0.06-0.08µgL(-1)) and good linearity (0.2-100µgL(-1)) for the determination of the PEs under the optimized conditions (extraction temperature, 70±1°C; extraction time, 35min; salt concentration, 30% w/v; stirring rate, 900rpm; desorption temperature, 230°C; and desorption time, 4min) whereas the repeatability and fiber-to-fiber reproducibility were in the range 6.1-7.8% and 8.9-10.2%, respectively. Finally, the proposed method was successfully applied to the analysis of PEs in drinking water and edible oil samples with good recoveries (87-112%) and satisfactory precisions (RSDs<8.3%), indicating the absence of matrix effects in the proposed HS-SPME method.


Chemistry Techniques, Analytical/methods , Drinking Water/chemistry , Esters/analysis , Nanocomposites/chemistry , Plant Oils/chemistry , Solid Phase Microextraction , Chemistry Techniques, Analytical/instrumentation , Chromatography, Gas , Flame Ionization , Graphite/chemistry , Limit of Detection , Phthalic Acids/analysis , Polyvinyl Chloride/chemistry , Reproducibility of Results , Stainless Steel/chemistry , Temperature , Vegetables/chemistry
6.
J Chromatogr A ; 1419: 10-8, 2015 Nov 06.
Article En | MEDLINE | ID: mdl-26455283

In the present research, dynamic electromembrane extraction (DEME) was introduced for the first time for extraction and determination of ionizable species from different biological matrices. The setup proposed for DEME provides an efficient, stable, and reproducible method to increase extraction efficiency. This setup consists of a piece of hollow fiber mounted inside a glass flow cell by means of two plastics connector tubes. In this dynamic system, an organic solvent is impregnated into the pores of hollow fiber as supported liquid membrane (SLM); an aqueous acceptor solution is repeatedly pumped into the lumen of hollow fiber by a syringe pump whereas a peristaltic pump is used to move sample solution around the mounted hollow fiber into the flow cell. Two platinum electrodes connected to a power supply are used during extractions which are located into the lumen of the hollow fiber and glass flow cell, respectively. The method was applied for extraction of amitriptyline (AMI) and nortriptyline (NOR) as model analytes from biological fluids. Effective parameters on DEME of the model analytes were investigated and optimized. Under optimized conditions, the calibration curves were linear in the range of 2.0-100µgL(-1) with coefficient of determination (r(2)) more than 0.9902 for both of the analytes. The relative standard deviations (RSD %) were less than 8.4% based on four replicate measurements. LODs less than 1.0µgL(-1) were obtained for both AMI and NOR. The preconcentration factors higher than 83-fold were obtained for the extraction of AMI and NOR in various biological samples.


Amitriptyline/blood , Amitriptyline/urine , Liquid-Liquid Extraction/methods , Membranes, Artificial , Nortriptyline/blood , Nortriptyline/urine , Electrochemical Techniques , Limit of Detection , Liquid-Liquid Extraction/instrumentation , Reproducibility of Results , Solutions , Solvents
7.
Anal Chim Acta ; 884: 52-60, 2015 Jul 16.
Article En | MEDLINE | ID: mdl-26073809

In this work, ZnO/PPy nanocomposite coating was fabricated on stainless steel and evaluated as a novel headspace solid phase microextraction (HS-SPME) fiber coating for extraction of ultra-trace amounts of environmental pollutants; namely, aliphatic hydrocarbons in water and soil samples. The ZnO/PPy nanocomposite were prepared by a two-step process including the electrochemical deposition of PPy on the surface of stainless steel in the first step, and the synthesis of ZnO nanorods by hydrothermal process in the pores of PPy matrix in the second step. Porous structure together with ZnO nanorods with the average diameter of 70 nm were observed on the surface by using scanning electron microscopy (SEM). The effective parameters on HS-SPME of hydrocarbons (i.e., extraction temperature, extraction time, desorption temperature, desorption time, salt concentration, and stirring rate) were investigated and optimized by one-variable-at-a-time method. Under optimized conditions (extraction temperature, 65±1°C; extraction time, 15 min; desorption temperature, 250°C; desorption time, 3 min; salt concentration, 10% w/v; and stirring rate, 1200 rpm), the limits of detection (LODs) were found in the range of 0.08-0.5 µg L(-1), whereas the repeatability and fiber-to-fiber reproducibility were in the range 5.4-7.6% and 8.6-10.4%, respectively. Also, the accuracies obtained for the spiked n-alkanes were in the range of 85-108%; indicating the absence of matrix effects in the proposed HS-SPME method. The results obtained in this work suggest that ZnO/PPy can be promising coating materials for future applications of SPME and related sample preparation techniques.

8.
Talanta ; 128: 493-9, 2014 Oct.
Article En | MEDLINE | ID: mdl-25059191

This study presents a new technique, dispersive micro solid phase extraction (DMSPE) combined with headspace solid phase micro-extraction (HS-SPME) for extraction and determination of chlorophenols (CPs) in water and honey samples using a Gas Chromatography-Electron Capture Detector (GC-ECD). Zein nanoparticles were made by liquid-liquid dispersion and applied for the first time as the sorbent phase in DMSPE. In the proposed DMSPE-HS-SPME method, 1% w/v of ethanolic zein solution was added to an aqueous sample and then a dose of the in-situ generated zein nanoparticles was applied to a pre-concentration of target analytes. Thermal desorption of analytes was performed after the isolating sorbent phase, and then HS-SPME was applied for enrichment prior to introducing to gas chromatography. All the important parameters influencing efficiency of the extraction process such effects of salt, pH, sorbent concentration, temperature, sorbent solution volume in DMSPE procedure, extraction temperature, extraction time, desorption temperature and time in the HS-SPME procedure were investigated and optimized. Results showed that under optimum extraction conditions, detection limits (signal to noise ratio=3) were in the range of 0.08-0.6 ng mL(-1) and evaluations for relative standard deviations (RSDs %) were between 6.62% and 8.36%.


Chlorophenols/analysis , Chromatography, Gas/methods , Honey/analysis , Nanoparticles/chemistry , Solid Phase Extraction/methods , Water Pollutants, Chemical/analysis , Zein/chemistry , Chlorophenols/chemistry , Chlorophenols/isolation & purification , Chromatography, Gas/instrumentation , Ethanol/chemistry , Hydrogen-Ion Concentration , Microscopy, Electron, Transmission , Nanoparticles/ultrastructure , Reproducibility of Results , Rivers/chemistry , Solid Phase Microextraction/methods , Temperature , Wastewater/analysis , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification
9.
Talanta ; 103: 207-13, 2013 Jan 15.
Article En | MEDLINE | ID: mdl-23200379

A nanosheet thin film based on Zn/Al layered double hydroxide (LDH) and TiO(2) composite was prepared via sol-gel process on capillary glass rod. Characterization of the fiber coating using X-ray diffraction (XRD) pattern and scanning electron microscopy (SEM) images showed that it consists of a large number of intercrossed and curved nanosheets with hexagonal architecture. The thickness of these plates is about few nanometers, and the lateral dimension is varying from 400 to 1000 nm. Application of the proposed coating as a solid phase microextraction fiber was investigated. As a model analyte, valproic acid (VPA, antiepileptic drug) was selected and its extraction from biological (human serum) and pharmaceutical (tablet and syrup) samples were performed without any considerable matrix effect. Analytical merits of the method, under optimum conditions (extraction temperature: 50 ± 1°C, extraction time: 15 min, desorption temperature: 250°C, desorption time: 2 min, solution pH: 1.5, salt concentration: 5 mol L(-1)), are 70 µg L(-1) and 0.20-100 mg L(-1) for LOD and LDR, respectively.


Aluminum Hydroxide/chemistry , Anticonvulsants/analysis , Chromatography, Gas , Hydroxides/chemistry , Nanocomposites/chemistry , Solid Phase Microextraction , Titanium/chemistry , Valproic Acid/analysis , Zinc Compounds/chemistry , Anticonvulsants/pharmacology , Epilepsy/blood , Epilepsy/drug therapy , Humans , Hydrogen-Ion Concentration , Pharmaceutical Preparations/analysis , Valproic Acid/pharmacology
...