RESUMEN
The aim of this work was to evaluate the anti-inflammatory and antioxidant effects of ethyl acetate extract obtained from the leaves of Brazilian peppertree Schinus terebinthifolius Raddi (EAELSt). Total phenols and flavonoids, chemical constituents, in vitro antioxidant activity (DPPH and lipoperoxidation assays), and cytotoxicity in L929 fibroblasts were determined. In vivo anti-inflammatory and antioxidant properties were evaluated using TPA-induced ear inflammation model in mice. Phenol and flavonoid contents were 19.2 ± 0.4 and 93.8 ± 5.2 of gallic acid or quercetin equivalents/g, respectively. LC-MS analysis identified 43 compounds, of which myricetin-O-pentoside and quercetin-O-rhamnoside were major peaks of chromatogram. Incubation with EAELSt decreased the amount of DPPH radical (EC50 of 54.5 ± 2.4 µg/mL) and lipoperoxidation at 200-500 µg/mL. The incubation with EAELSt did not change fibroblast viability up to 100 µg/mL. Topical treatment with EAELSt significantly reduced edema and myeloperoxidase activity at 0.3, 1, and 3 mg/ear when compared to the vehicle-treated group. In addition, EAELSt decreased IL-6 and TNF-α levels and increased IL-10 levels. Besides, it modulated markers of oxidative stress (reduced total hydroperoxides and increased sulfhydryl contents and ferrium reduction potential) and increased the activity of catalase and superoxide dismutase, without altering GPx activity.
Asunto(s)
Anacardiaceae , Antioxidantes , Ratones , Animales , Antioxidantes/farmacología , Antioxidantes/química , Schinus , Quercetina , Brasil , Anacardiaceae/química , Extractos Vegetales/química , Antiinflamatorios/farmacología , Hojas de la Planta/químicaRESUMEN
Different degrees in the biological activities of Canavalia rosea had been previously reported . In this study, our group assessed the cardioprotective effects of the ethyl acetate fraction (EAcF) of the Canavalia rosea leaves. Firstly, it was confirmed, by in vitro approach, that the EAcF has high antioxidant properties due to the presence of important secondary metabolites, as flavonoids. In order to explore their potential protector against cardiovascular disorders, hearts were previously perfused with EAcF (300 µg.mL-1) and submitted to the global ischemia followed by reperfusion in Langendorff system. The present findings have demonstrated that EAcF restored the left ventricular developed pressure and decreased the arrhythmias severity index. Furthermore, EAcF significantly increased the glutathiones peroxidase activity with decreased malondialdehyde and creatine kinase levels. EAcF was effective upon neither the superoxide dismutase, glutationes reductase nor the catalase activities. In addition, the Western blot analysis revealed that ischemia-reperfusion injury significantly upregulates caspase 3 protein expression, while EAcF abolishes this effect. These results provide evidence that the EAcF reestablishes the cardiac contractility and prevents arrhythmias; it is suggested that EAcF could be used to reduce injury caused by cardiac reperfusion. However more clinical studies should be performed, before applying it in the clinic.
Asunto(s)
Antioxidantes , Daño por Reperfusión Miocárdica , Ratas , Animales , Humanos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Canavalia/metabolismo , Ratas Sprague-Dawley , Superóxido Dismutasa/metabolismo , Hojas de la Planta/metabolismo , Miocardio/metabolismoRESUMEN
Medicinal plants have been commonly associated with chemotherapeutic treatments, as an approach to reduce the toxicological risks of classical anticancer drugs. The objective of this study was to evaluate the effects of combining the antineoplastic drug 5-fluorouracil (5-FU) with Matricaria recutita flowers extract (MRFE) to treat mice transplanted with sarcoma 180. Tumor inhibition, body and visceral mass variation, biochemical, hematological, and histopathological parameters were evaluated. The isolated 5-FU, 5-FU+MRFE 100 mg/kg/day, and 5-FU+MRFE 200 mg/kg/day reduced tumor growth; however, 5-FU+MRFE 200 mg/kg/day showed a more significant tumor reduction when compared to 5-FU alone. These results corroborated with the analysis of the tumor histopathological and immunodetection of the Ki67 antigen. In the toxicological analysis of the association 5-FU+MRFE 200 mg/kg/day, an intense loss of body mass was observed, possibly as a result of diarrhea. In addition, spleen atrophy, with a reduction in white pulp, leukopenia and thrombocytopenia, was observed in the 5-FU groups alone and associated with MRFE 200 mg/kg/day; however, there was no statistical difference between these groups. Therefore, the MRFE 200 mg/kg/day did not interfere in myelosuppressive action of 5-FU. In hematological analysis, body and visceral mass variation and biochemical parameters related to renal (urea and creatinine) and cardiac (CK-MB) function, no alteration was observed. In biochemical parameters related to liver function enzymes, there was a reduction in aspartate transaminase (AST) values in the 5-FU groups alone and associated with MRFE 200 mg/kg/day; however, there was no statistical difference between these groups. Therefore, the MRFE 200 mg/kg/day does not appear to influence enzyme reduction. The results of this study suggest that the association between the 5-FU+MRFE 200 can positively interfere with the antitumor activity, promoting the antineoplastic-induced reduction in body mass, while minimizing the toxicity of chemotherapy.
RESUMEN
The extract obtained from Mikania glomerata leaves rich in ent-kaurenoic acid (ERKA) shows cytotoxic activity in vitro, but its hydrophobic nature and thermosensitivity are issues to be solved prior to in vivo antitumor studies. The purpose of this study was to investigate the antitumor activity of inclusion complexes formed between ERKA and ß-cyclodextrin (ERKA:ß-CD) in rodents. ERKA:ß-CD complexes obtained by malaxation (MX) and co-evaporation (CE) methods were firstly characterized regarding their physical properties, encapsulation efficiency, and cytotoxicity againts L929 cells. The antitumor activity study was then performed in mice with sarcoma 180 treated with saline, 5-fluouracil (5FU) and ERKA:ß-CD at 30, 100 and 300 µg/kg. The weight, volume, percentage of inhibition growth, gross and pathological features and positivity for TUNEL, ki67, NFκB and NRF2 in the tumors were assessed. Serum lactate-dehydrogenase activity (LDH), white blood cells count (WBC) and both gross and pathological features of the liver, kidneys and spleen were also evaluated. The formation of the inclusion complexes was confirmed by thermal analysis and FTIR, and they were non-toxic for L929 cells. The MX provided a better complexation efficiency. ERKA:ß-CD300 promoted significant tumor growth inhibition, and attenuated the tumor mitotic activity and necrosis content, comparable to 5-fluorouracil. ERKA:ß-CD300 also increased TUNEL-detected cell death, reduced Ki67 and NF-kB immunoexpression, and partially inhibited the serum LDH activity. No side effect was observed in ERKA:ß-CD300-treated animals. The ERKA:ß-CD inclusion complexes at 300 µg/kg displays antitumour activity in mice with low systemic toxicity, likely due to inhibition on the NF-kB signaling pathway and LDH activity.
Asunto(s)
Mikania , Neoplasias , Sarcoma 180 , beta-Ciclodextrinas , Ratones , Animales , Mikania/química , Sarcoma 180/tratamiento farmacológico , FN-kappa B , Antígeno Ki-67 , beta-Ciclodextrinas/química , Desarrollo de MedicamentosRESUMEN
Natural polysaccharides are structures composed of highly diversified biological macromolecules whose properties have been exploited by a diversity of industries. Until 2018, the polysaccharides market raised more than US $ 12 billion worldwide, while an annual growth forecast of 4.8% is expected by 2026. The food industry is largely responsible for the consumption of this plant-source material, produced by microbiological fermentation. Among the used polysaccharides, gums are hydrocolloids obtained from a variety of sources and in different forms, being composed of salts of calcium, potassium, magnesium and sugar monomers. Their non-toxicity, hydrophilicity, viscosity, biodegradability, biocompatibility and sustainable production are among their main advantages. Although Brazil is amongst the largest producers of cashew gum, reaching 50 tons per year, the polysaccharide is not being used to its full potential, in particular, with regard to its uses in pharmaceuticals. Cashew gum (CG), obtained from Anacardium occidentale L., caught the attention of the industry only in 1970; in 1990, its production started to grow. Within the Brazilian academy, the groups from the Federal University of Ceará and Piauí are devoting the most efforts to the study of cashew gum, with a total of 31 articles already published. The number of patents in the country for innovations containing cashew tree gum has reached 14, including the technological process for the purification of cashew tree gum, comparison of physical and chemical methods for physicochemical characterizations, and optimum purification methodology. This scenario opens a range of opportunities for the use of cashew gum, mainly in the development of new pharmaceutical products, with a special interest in nanoparticles.
RESUMEN
The low solubility and high volatility of perillyl alcohol (POH) compromise its bioavailability and potential use as chemotherapeutic drug. In this work, we have evaluated the anticancer activity of POH complexed with ß-cyclodextrin (ß-CD) using three complexation approaches. Molecular docking suggests the hydrogen-bond between POH and ß-cyclodextrin in molar proportion was 1:1. Thermal analysis and Fourier-transform infrared spectroscopy (FTIR) confirmed that the POH was enclosed in the ß-CD cavity. Also, there was a significant reduction of particle size thereof, indicating a modification of the ß-cyclodextrin crystals. The complexes were tested against human L929 fibroblasts after 24 h of incubation showing no signs of cytotoxicity. Concerning the histopathological results, the treatment with POH/ß-CD at a dose of 50 mg/kg promoted approximately 60% inhibition of tumor growth in a sarcoma S180-induced mice model and the reduction of nuclear immunoexpression of the Ki67 antigen compared to the control group. Obtained data suggest a significant reduction of cycling cells and tumor proliferation. Our results confirm that complexation of POH/ß-CD not only solves the problem related to the volatility of the monoterpene but also increases its efficiency as an antitumor agent.
RESUMEN
Passiflora alata or passion fruit is a native flowering plant from Amazon, geographically spread from Peru to Brazil. The plant has long been used in folks medicine for its pharmacological properties and is included in the Brazilian Pharmacopoeia since 1929. The aim of this study was to evaluate the potential cytotoxic and antitumor activities of Passiflora alata leaf extract (PaLE) in S180-tumor bearing mice. The percentage of cell proliferation inhibition (% CPI) and IC50 in relation to 4 tumor cell lines were determined in PC3, K-562, HepG2 and S180 cell lines using the MTT assay. PaLE showed a CPI > 75% and greater potency (IC50 < 30 µg/mL) against PC3 and S180 cell lines. PaLE showed antitumor activity in treatments intraperitoneally (36.75% and 44.99% at doses of 100 and 150 mg/kg/day, respectively). Toxicological changes were shown in the reduced body mass associated with reduced food consumption, increased spleen mass associated with histopathological increase in the white pulp of the spleen and increased number of total leukocytes with changes in the percentage relationship between lymphocytes and neutrophils. Our outcomes corroborate the conclusion that PaLE has antitumor activity in vitro and in vivo with low toxicity.
Asunto(s)
Flavonoides/farmacología , Neoplasias/tratamiento farmacológico , Passiflora/química , Extractos Vegetales/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Brasil , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Flavonoides/química , Xenoinjertos , Humanos , Ratones , Neoplasias/patología , Perú , Extractos Vegetales/química , Hojas de la Planta/químicaRESUMEN
Solid lipid nanoparticles (SLNs) can be produced by various methods, but most of them are difficult to scale up. Supercritical fluid (SCF) is an important tool to produce micro/nanoparticles with a narrow size distribution and high encapsulation efficiency. The aim of this work was to produce cetyl palmitate SLNs using SCF to be loaded with praziquantel (PZQ) as an insoluble model drug. The mean particle size (nm), polydispersity index (PdI), zeta potential, and encapsulation efficiency (EE) were determined on the freshly prepared samples, which were also subject of Differential Scanning Calorimetry (DSC), Fourier-Transform Infrared Spectroscopy (FTIR), drug release profile, and in vitro cytotoxicity analyses. PZQ-SLN exhibited a mean size of ~25 nm, PdI ~ 0.5, zeta potential ~-28 mV, and EE 88.37%. The DSC analysis demonstrated that SCF reduced the crystallinity of cetyl palmitate and favored the loading of PZQ into the lipid matrices. No chemical interaction between the PZQ and cetyl palmitate was revealed by FTIR analysis, while the release or PZQ from SLN followed the Weibull model. PZQ-SLN showed low cytotoxicity against fibroblasts cell lines. This study demonstrates that SCF may be a suitable scale-up procedure for the production of SLN, which have shown to be an appropriate carrier for PZQ.
Asunto(s)
Proliferación Celular/efectos de los fármacos , Lípidos/química , Nanopartículas/química , Praziquantel/química , Dióxido de Carbono/química , Línea Celular , Cromatografía con Fluido Supercrítico , Fibroblastos/efectos de los fármacos , Humanos , Palmitatos/química , Praziquantel/farmacologíaRESUMEN
OBJECTIVES: The aim of this study was to investigate the cytotoxic and antitumour effects of the essential oil from the leaves of Mentha x villosa (EOMV) and its main component (rotundifolone). METHODS: In-vitro cytotoxic activity of the EOMV and rotundifolone was determined on cultured tumour cells. In-vivo antitumour activity of the EOMV was assessed in sarcoma 180-bearing mice. KEY FINDINGS: The EOMV displayed cytotoxicity against human tumour cell lines, showing IC50 values in the range of 0.57-1.02 µg/ml in the HCT-116 and SF-295 cell lines, respectively. Rotundifolone showed weak cytotoxicity against HCT-116, SF-295 and OVCAR-8 cell lines (IC50 > 25.00 µg/ml). Tumour growth inhibition rates were 29.4-40.5% and 25.0-45.2% for the EOMV treatment by intraperitoneal (50-100 mg/kg/day) and oral (100-200 mg/kg/day) administration, respectively. The EOMV did not significantly affect body mass and macroscopy of the organs. CONCLUSIONS: The EOMV possesses significant antitumour activity with low systemic toxicity, possibly due to the synergistic action of its minor constituents.