Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Intervalo de año de publicación
1.
Cell Death Differ ; 30(1): 37-53, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35869285

RESUMEN

Despite being frequently observed in cancer cells, chromosomal instability (CIN) and its immediate consequence, aneuploidy, trigger adverse effects on cellular homeostasis that need to be overcome by anti-stress mechanisms. As such, these safeguard responses represent a tumor-specific Achilles heel, since CIN and aneuploidy are rarely observed in normal cells. Recent data have revealed that epitranscriptomic marks catalyzed by RNA-modifying enzymes change under various stress insults. However, whether aneuploidy is associated with such RNA modifying pathways remains to be determined. Through an in silico search for aneuploidy biomarkers in cancer cells, we found TRMT61B, a mitochondrial RNA methyltransferase enzyme, to be associated with high levels of aneuploidy. Accordingly, TRMT61B protein levels are increased in tumor cell lines with an imbalanced karyotype as well as in different tumor types when compared to control tissues. Interestingly, while TRMT61B depletion induces senescence in melanoma cell lines with low levels of aneuploidy, it leads to apoptosis in cells with high levels. The therapeutic potential of these results was further validated by targeting TRMT61B in transwell and xenografts assays. We show that TRM61B depletion reduces the expression of several mitochondrial encoded proteins and limits mitochondrial function. Taken together, these results identify a new biomarker of aneuploidy in cancer cells that could potentially be used to selectively target highly aneuploid tumors.


Asunto(s)
Metiltransferasas , Neoplasias , Humanos , ARN Mitocondrial , Metiltransferasas/genética , Aneuploidia , Inestabilidad Cromosómica , ARN , Biomarcadores , Neoplasias/tratamiento farmacológico , Neoplasias/genética
2.
Clin. transl. oncol. (Print) ; 24(12): 2432-2440, dec. 2022.
Artículo en Inglés | IBECS | ID: ibc-216089

RESUMEN

Purpose The identification of subpopulations harboring druggable targets has become a major step forward in the subclassification of solid tumors into small groups suitable for specific therapies. BRAF fusions represent a paradigm of uncommon and targetable oncogenic events and have been widely correlated to the development of specific malignancies. However, they are only present in a limited frequency across most common tumor types. At this regard, we performed a genomic screening aimed to identifying rare variants associated to advanced prostate cancer development. Methods Tumoral tissue genomic screening of 41 patients developing advanced prostate cancer was performed at our center as part of the GETHI XX study. The project, sponsored by the Spanish Collaborative Group in Rare Cancers (GETHI), aims to analyze the molecular background of rare tumors and to discover unfrequent molecular variants in common tumors. Results Here we present the clinical outcome and an in-deep molecular analysis performed in a case harboring a SND1-BRAF fusion gene. The identification of such rearrangement in a patient refractory to standard therapies led to the administration of trametinib (MEK inhibitor). Despite unsensitive to standard therapies, the patient achieved a dramatic response to trametinib. A comprehensive study of the tumor demonstrated this event to be a trunk alteration with higher expression of MEK in areas of tumor invasion. Conclusions Our study describes the patient-driven discovery of the first BRAF fusion-driven prostate cancer effectively treated with trametinib. Consequently, MAPK pathway activation could define a new subtype of prostate cancer susceptible to a tailored management. (AU)


Asunto(s)
Humanos , Masculino , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas B-raf/genética , Endonucleasas , Quinasas de Proteína Quinasa Activadas por Mitógenos , Mutación , Inhibidores de Proteínas Quinasas/farmacología
3.
Clin Transl Oncol ; 24(12): 2432-2440, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35994225

RESUMEN

PURPOSE: The identification of subpopulations harboring druggable targets has become a major step forward in the subclassification of solid tumors into small groups suitable for specific therapies. BRAF fusions represent a paradigm of uncommon and targetable oncogenic events and have been widely correlated to the development of specific malignancies. However, they are only present in a limited frequency across most common tumor types. At this regard, we performed a genomic screening aimed to identifying rare variants associated to advanced prostate cancer development. METHODS: Tumoral tissue genomic screening of 41 patients developing advanced prostate cancer was performed at our center as part of the GETHI XX study. The project, sponsored by the Spanish Collaborative Group in Rare Cancers (GETHI), aims to analyze the molecular background of rare tumors and to discover unfrequent molecular variants in common tumors. RESULTS: Here we present the clinical outcome and an in-deep molecular analysis performed in a case harboring a SND1-BRAF fusion gene. The identification of such rearrangement in a patient refractory to standard therapies led to the administration of trametinib (MEK inhibitor). Despite unsensitive to standard therapies, the patient achieved a dramatic response to trametinib. A comprehensive study of the tumor demonstrated this event to be a trunk alteration with higher expression of MEK in areas of tumor invasion. CONCLUSIONS: Our study describes the patient-driven discovery of the first BRAF fusion-driven prostate cancer effectively treated with trametinib. Consequently, MAPK pathway activation could define a new subtype of prostate cancer susceptible to a tailored management.


Asunto(s)
Neoplasias de la Próstata , Proteínas Proto-Oncogénicas B-raf , Endonucleasas , Humanos , Masculino , Quinasas de Proteína Quinasa Activadas por Mitógenos , Mutación , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas B-raf/genética
4.
Cells ; 9(5)2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32455813

RESUMEN

Laminopathies are causally associated with mutations on the Lamin A/C gene (LMNA). To date, more than 400 mutations in LMNA have been reported in patients. These mutations are widely distributed throughout the entire gene and are associated with a wide range of phenotypes. Unfortunately, little is known about the mechanisms underlying the effect of the majority of these mutations. This is the case of more than 40 mutations that are located at exon 4. Using CRISPR/Cas9 technology, we generated a collection of Lmna exon 4 mutants in mouse C2C12 myoblasts. These cell models included different types of exon 4 deletions and the presence of R249W mutation, one of the human variants associated with a severe type of laminopathy, LMNA-associated congenital muscular dystrophy (L-CMD). We characterized these clones by measuring their nuclear circularity, myogenic differentiation capacity in 2D and 3D conditions, DNA damage, and levels of p-ERK and p-AKT (phosphorylated Mitogen-Activated Protein Kinase 1/3 and AKT serine/threonine kinase 1). Our results indicated that Lmna exon 4 mutants showed abnormal nuclear morphology. In addition, levels and/or subcellular localization of different members of the lamin and LINC (LInker of Nucleoskeleton and Cytoskeleton) complex were altered in all these mutants. Whereas no significant differences were observed for ERK and AKT activities, the accumulation of DNA damage was associated to the Lmna p.R249W mutant myoblasts. Finally, significant myogenic differentiation defects were detected in the Lmna exon 4 mutants. These results have key implications in the development of future therapeutic strategies for the treatment of laminopathies.


Asunto(s)
Exones/genética , Lamina Tipo A/genética , Mutación/genética , Mioblastos/metabolismo , Animales , Secuencia de Bases , Diferenciación Celular , Línea Celular , Núcleo Celular/metabolismo , Forma del Núcleo Celular , Células Clonales , Daño del ADN , Femenino , Sistema de Señalización de MAP Quinasas , Proteínas de la Membrana/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Desarrollo de Músculos , Fracciones Subcelulares/metabolismo , Proteínas de Unión a Telómeros/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...