Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 14(11): 773, 2023 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-38007509

RESUMEN

Cigarette smoking impairs the lung innate immune response making smokers more susceptible to infections and severe symptoms. Dysregulation of cell death is emerging as a key player in chronic inflammatory conditions. We have recently reported that short exposure of human monocyte-derived macrophages (hMDMs) to cigarette smoke extract (CSE) altered the TLR4-dependent response to lipopolysaccharide (LPS). CSE caused inhibition of the MyD88-dependent inflammatory response and activation of TRIF/caspase-8/caspase-1 pathway leading to Gasdermin D (GSDMD) cleavage and increased cell permeability. Herein, we tested the hypothesis that activation of caspase-8 by CSE increased pro-inflammatory cell death of LPS-stimulated macrophages. To this purpose, we measured apoptotic and pyroptotic markers as well as the expression/release of pro-inflammatory mediators in hMDMs exposed to LPS and CSE, alone or in combination, for 6 and 24 h. We show that LPS/CSE-treated hMDMs, but not cells treated with CSE or LPS alone, underwent lytic cell death (LDH release) and displayed apoptotic features (activation of caspase-8 and -3/7, nuclear condensation, and mitochondrial membrane depolarization). Moreover, the negative regulator of caspase-8, coded by CFLAR gene, was downregulated by CSE. Activation of caspase-3 led to Gasdermin E (GSDME) cleavage. Notably, lytic cell death caused the release of the damage-associated molecular patterns (DAMPs) heat shock protein-60 (HSP60) and S100A8/A9. This was accompanied by an impaired inflammatory response resulting in inhibited and delayed release of IL6 and TNF. Of note, increased cleaved caspase-3, higher levels of GSDME and altered expression of cell death-associated genes were found in alveolar macrophages of smoker subjects compared to non-smoking controls. Overall, our findings show that CSE sensitizes human macrophages to cell death by promoting pyroptotic and apoptotic pathways upon encountering LPS. We propose that while the delayed inflammatory response may result in ineffective defenses against infections, the observed cell death associated with DAMP release may contribute to establish chronic inflammation. CS exposure sensitizes human macrophages to pro-inflammatory cell death. Upon exposure to LPS, CS inhibits the TLR4/MyD88 inflammatory response, downregulating the pro-inflammatory genes TNF and IL6 and the anti-apoptotic gene CFLAR, known to counteract caspase-8 activity. CS enhances caspase-8 activation through TLR4/TRIF, with a partial involvement of RIPK1, resulting on the activation of caspase-1/GSDMD axis leading to increased cell permeability and DAMP release through gasdermin pores [19]. At later timepoints caspase-3 becomes strongly activated by caspase-8 triggering apoptotic events which are associated with mitochondrial membrane depolarization, gasdermin E cleavage and secondary necrosis with consequent massive DAMP release.


Asunto(s)
Fumar Cigarrillos , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Caspasa 3/metabolismo , Caspasa 8/metabolismo , Muerte Celular , Gasderminas , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Macrófagos/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Nicotiana/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
2.
FASEB J ; 36(9): e22525, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36004615

RESUMEN

Mechanisms and consequences of gasdermin D (GSDMD) activation in cigarette smoke (CS)-associated inflammation and lung disease are unknown. GSDMD is a downstream effector of caspase-1, -8, and -4. Upon cleavage, GSDMD generates pores into cell membranes. Different degrees of GSDMD activation are associated with a range of physiological outputs ranging from cell hyperactivation to pyroptosis. We have previously reported that in human monocyte-derived macrophages CS extract (CSE) inhibits the NLRP3 inflammasome and shifts the response to lipopolysaccharide (LPS) towards the TLR4-TRIF axis leading to activation of caspase-8, which, in turn, activates caspase-1. In the present work, we investigated whether other ASC-dependent inflammasomes could be involved in caspase activation by CSE and whether caspase activation led to GSDMD cleavage and other downstream effects. Presented results demonstrate that CSE promoted ASC-independent activation of caspase-1 leading to GSDMD cleavage and increased cell permeability, in the absence of cell death. GSDMD cleavage was strongly enhanced upon stimulation with LPS+CSE, suggesting a synergistic effect between the two stimuli. Noteworthy, CSE promoted LPS internalization leading to caspase-4 activation, thus contributing to increased GSDMD cleavage. Caspase-dependent GSDMD cleavage was associated with mitochondrial superoxide generation. Increased cleaved GSDMD was found in lung macrophages of smokers compared to ex-smokers and non-smoking controls. Our findings revealed that ASC-independent activation of caspase-1, -4, and -8 and GSDMD cleavage upon exposure to CS may contribute to macrophage dysfunction and feed the chronic inflammation observed in the smokers' lung.


Asunto(s)
Caspasas Iniciadoras/metabolismo , Fumar Cigarrillos , Inflamasomas , Proteínas de Unión a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Caspasa 1/metabolismo , Caspasas/metabolismo , Humanos , Inflamasomas/metabolismo , Inflamación/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lipopolisacáridos/metabolismo , Lipopolisacáridos/toxicidad , Macrófagos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Nicotiana/metabolismo
3.
Radiol Med ; 127(4): 426-432, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35284986

RESUMEN

PURPOSE: To support the wellbeing of both patients and their families, our aim was to investigate the satisfaction of non-COVID in- and out-patients regarding safety measures implemented at our radiology unit of a transplant institute against COVID infection. MATERIALS AND METHODS: Over a five-month period, adult patients' feedback was obtained by a questionnaire on the fear of contracting COVID-19 during a radiology examination, the perceived delay in treatment, and the following safety measures implemented: modified schedules to limit the number of patients in the waiting area and to maximize social distancing; assistance by staff when visitors were not admitted; cleaning and disinfection of machines; mask wearing and hand hygiene of staff; and staff advice on hand hygiene and infection control precautions. RESULTS: Over a five-month period, our preliminary results (387 patients) showed general patient satisfaction (99.1%) with safety measures applied at our radiology unit. Patients were satisfied with distancing and assistance by staff (100%), cleaning and disinfection (91%), mask wearing and hand hygiene of the staff (97%), and staff advice (94%). There was some criticism of the perceived delay in treatment (7.3%) and in the scheduling of the waiting list (5.4%), with 5.4% fearing contracting the virus. Patients' awareness of safety measures and confidence in the hospital preparedness policy was perceived by all interviewers, and 100% appreciated being questioned. CONCLUSION: The feedback given by the non-COVID patient helps to measure the quality in health care, to improve the quality service, and to protect and satisfy more vulnerable patients, also during the COVID-19 pandemic.


Asunto(s)
COVID-19 , Radiología , Adulto , COVID-19/prevención & control , Humanos , Pandemias/prevención & control , SARS-CoV-2 , Encuestas y Cuestionarios
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA