Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Med Sci Sports Exerc ; 56(7): 1225-1232, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38377006

RESUMEN

BACKGROUND: Resistance training confers numerous health benefits that are mediated in part by circulating factors. Toward an enhanced molecular understanding, there is growing interest in a class of signaling biomarkers called extracellular vesicles (EV). EVs support physiological adaptations to exercise by transporting their cargo (e.g., microRNA (miRNA)) to target cells. Previous studies of changes in EV cargo have focused on aerobic exercise, with limited data examining the effects of resistance exercise. We examined the effect of acute resistance exercise on circulating EV miRNAs and their predicted target pathways. METHODS: Ten participants (5 men; age, 26.9 ± 5.5 yr; height, 173.4 ± 10.5 cm; body mass, 74.0 ± 11.1 kg; body fat, 25.7% ± 11.6%) completed an acute heavy resistance exercise test (AHRET) consisting of six sets of 10 repetitions of back squats using 75% one-repetition maximum. Pre-/post-AHRET, EVs were isolated from plasma using size exclusion chromatography, and RNA sequencing was performed. Differentially expressed miRNAs between pre- and post-AHRET EVs were analyzed using Ingenuity Pathway Analysis to predict target messenger RNAs and their target biological pathways. RESULTS: Overall, 34 miRNAs were altered by AHRET ( P < 0.05), targeting 4895 mRNAs, with enrichment of 175 canonical pathways ( P < 0.01), including 12 related to growth/metabolism (p53, IGF-I, STAT3, PPAR, JAK/STAT, growth hormone, WNT/ß-catenin, ERK/MAPK, AMPK, mTOR, and PI3K/AKT) and 8 to inflammation signaling (TGF-ß, IL-8, IL-7, IL-3, IL-6, IL-2, IL-17, IL-10). CONCLUSIONS: Acute resistance exercise alters EV miRNAs targeting pathways involved in growth, metabolism, and immune function. Circulating EVs may serve as significant adaptive signaling molecules influenced by exercise training.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Entrenamiento de Fuerza , Humanos , Masculino , Vesículas Extracelulares/metabolismo , Adulto , Estudios Prospectivos , Femenino , MicroARNs/sangre , MicroARNs/metabolismo , Adulto Joven , Transducción de Señal , MicroARN Circulante/sangre
2.
Nat Aging ; 1(12): 1148-1161, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-35665306

RESUMEN

Heterochronic blood exchange (HBE) has demonstrated that circulating factors restore youthful features to aged tissues. However, the systemic mediators of those rejuvenating effects remain poorly defined. We show here that the beneficial effect of young blood on aged muscle regeneration was diminished when serum was depleted of extracellular vesicles (EVs). Whereas EVs from young animals rejuvenate aged cell bioenergetics and skeletal muscle regeneration, aging shifts EV subpopulation heterogeneity and compromises downstream benefits on recipient cells. Machine learning classifiers revealed that aging shifts the nucleic acid, but not protein, fingerprint of circulating EVs. Alterations in sub-population heterogeneity were accompanied by declines in transcript levels of the pro-longevity protein, α-Klotho, and injection of EVs improved muscle regeneration in a Klotho mRNA-dependent manner. These studies demonstrate that EVs play a key role in the rejuvenating effects of HBE and that Klotho transcripts within EVs phenocopy the effects of young serum on aged skeletal muscle.


Asunto(s)
Envejecimiento , Vesículas Extracelulares , Animales , Envejecimiento/fisiología , Músculo Esquelético/metabolismo , Vesículas Extracelulares/metabolismo , Regeneración/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA