Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Blood ; 136(16): 1837-1850, 2020 10 15.
Article En | MEDLINE | ID: mdl-32845007

Despite harboring mutations in oncogenes and tumor suppressors that promote cancer growth, T-cell acute lymphoblastic leukemia (T-ALL) cells require exogenous cells or signals to survive in culture. We previously reported that myeloid cells, particularly dendritic cells, from the thymic tumor microenvironment support the survival and proliferation of primary mouse T-ALL cells in vitro. Thus, we hypothesized that tumor-associated myeloid cells would support T-ALL in vivo. Consistent with this possibility, in vivo depletion of myeloid cells results in a significant reduction in leukemia burden in multiple organs in 2 distinct mouse models of T-ALL and prolongs survival. The impact of the myeloid compartment on T-ALL growth is not dependent on suppression of antitumor T-cell responses. Instead, myeloid cells provide signals that directly support T-ALL cells. Transcriptional profiling, functional assays, and acute in vivo myeloid-depletion experiments identify activation of IGF1R as a critical component of myeloid-mediated T-ALL growth and survival. We identify several myeloid subsets that have the capacity to directly support survival of T-ALL cells. Consistent with mouse models, myeloid cells derived from human peripheral blood monocytes activate IGF1R and directly support survival of primary patient T-ALL cells in vitro. Furthermore, enriched macrophage gene signatures in published clinical samples correlate with inferior outcomes for pediatric T-ALL patients. Collectively, these data reveal that tumor-associated myeloid cells provide signals critical for T-ALL growth in multiple organs in vivo and implicate tumor-associated myeloid cells and associated signals as potential therapeutic targets.


Cell Communication , Myeloid Cells/immunology , Myeloid Cells/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/etiology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Tumor Microenvironment , Biomarkers , Cell Line, Tumor , Gene Expression Profiling , Humans , Macrophages/immunology , Macrophages/metabolism , Monocytes/immunology , Monocytes/metabolism , Myeloid Cells/pathology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , Signal Transduction
2.
Oncotarget ; 10(68): 7220-7237, 2019 Dec 31.
Article En | MEDLINE | ID: mdl-31921384

The synthetic oligonucleotide SD-101 is a potent and specific agonist for toll-like receptor 9. Intratumoral injection of SD-101 induces significant anti-tumor immunity in preclinical and clinical studies, especially when combined with PD-1 blockade. To build upon this strategy, we studied the enhancement of SD-101 activities by combination with low-dose cyclophosphamide, a well-characterized agent with potentially complementary activities. In multiple mouse tumor models, we demonstrate substantial anti-tumor activity of the combination, compared to each single agent. Combination therapy generated CD8+ T cell dependent immunity leading to rejection of both non-injected and injected tumors and long-term survival, even in very large tumors. Mechanistic studies encompassing global gene expression changes and characterization of immune cell infiltrates show the rapid, sequential induction of innate and adaptive responses and identify discrete contributions of SD-101 and cyclophosphamide. Importantly, these changes were prominent in tumors not injected directly with SD-101. Combination treatment resulted in creation of a permissive environment for a systemic anti-tumor immune response, including a reduction of intratumoral regulatory T cells (Tregs) and an increase in "M1" versus "M2" tumor-associated macrophage (TAM) phenotypes. Additionally, we observed increased immunogenic cell death as well as antigen processing in response to combination treatment.

3.
Infect Immun ; 85(9)2017 09.
Article En | MEDLINE | ID: mdl-28630062

Repeated stimulation of T cells that occurs in the context of chronic infection results in progressively reduced responsiveness of T cells to pathogen-derived antigens. This phenotype, known as T cell exhaustion, occurs during chronic infections caused by a variety of pathogens, from persistent viruses to parasites. Unlike the memory cells that typically form after successful pathogen clearance following an acute infection, exhausted T cells secrete lower levels of effector cytokines, proliferate less in response to cognate antigen, and upregulate cell surface inhibitory molecules such as PD-1 and LAG-3. The molecular events that lead to the induction of this phenotype have, however, not been fully characterized. In T cells, members of the NFAT family of transcription factors not only are responsible for the expression of many activation-induced genes but also are crucial for the induction of transcriptional programs that inhibit T cell activation and maintain tolerance. Here we show that NFAT1-deficient CD4+ T cells maintain higher proliferative capacity and expression of effector cytokines following Plasmodium yoelii infection and are therefore more resistant to P. yoelii-induced exhaustion than their wild-type counterparts. Consequently, gene expression microarray analysis of CD4+ T cells following P. yoelii-induced exhaustion shows upregulation of effector T cell-associated genes in the absence of NFAT1 compared with wild-type exhausted T cells. Furthermore, adoptive transfer of NFAT1-deficient CD4+ T cells into mice infected with P. yoelii results in increased production of antibodies to cognate antigen. Our results support the idea that NFAT1 is necessary to fully suppress effector responses during Plasmodium-induced CD4+ T cell exhaustion.


CD4-Positive T-Lymphocytes/immunology , Host-Pathogen Interactions , Immune Tolerance , Malaria/pathology , NFATC Transcription Factors/metabolism , Plasmodium yoelii/pathogenicity , Animals , Cell Proliferation , Cytokines/metabolism , Lymphocyte Activation , Malaria/immunology , Mice, Inbred C57BL
4.
Cancer Res ; 69(9): 3937-46, 2009 May 01.
Article En | MEDLINE | ID: mdl-19366796

Platelet-derived growth factor (PDGF) receptors (PDGFR) and their ligands play critical roles in several human malignancies. Sunitinib is a clinically approved multitargeted tyrosine kinase inhibitor that inhibits vascular endothelial growth factor receptor, c-KIT, and PDGFR, and has shown clinical activity in various solid tumors. Activation of PDGFR signaling has been described in gastrointestinal stromal tumors (PDGFRA mutations) as well as in chronic myeloid leukemia (BCR-PDGFRA translocation), and sunitinib can yield clinical benefit in both settings. However, the discovery of PDGFR activating mutations or gene rearrangements in other tumor types could reveal additional patient populations who might benefit from treatment with anti-PDGFR therapies, such as sunitinib. Using a high-throughput cancer cell line screening platform, we found that only 2 of 637 tested human tumor-derived cell lines show significant sensitivity to single-agent sunitinib exposure. These two cell lines [a non-small-cell lung cancer (NSCLC) and a rhabdomyosarcoma] showed expression of highly phosphorylated PDGFRA. In the sunitinib-sensitive adenosquamous NSCLC cell line, PDGFRA expression was associated with focal PFGRA gene amplification, which was similarly detected in a small fraction of squamous cell NSCLC primary tumor specimens. Moreover, in this NSCLC cell line, focal amplification of the gene encoding the PDGFR ligand PDGFC was also detected, and silencing PDGFRA or PDGFC expression by RNA interference inhibited proliferation. A similar codependency on PDGFRA and PDGFC was observed in the sunitinib-sensitive rhabdomyosarcoma cell line. These findings suggest that, in addition to gastrointestinal stromal tumors, rare tumors that show PDGFC-mediated PDGFRA activation may also be clinically responsive to pharmacologic PDGFRA or PDGFC inhibition.


Carcinoma, Non-Small-Cell Lung/drug therapy , Indoles/pharmacology , Lung Neoplasms/drug therapy , Pyrroles/pharmacology , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Rhabdomyosarcoma/drug therapy , Antibodies/immunology , Antibodies/pharmacology , Carcinoma, Non-Small-Cell Lung/enzymology , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Gene Amplification , Gene Expression Profiling , Humans , Ligands , Lung Neoplasms/enzymology , Lung Neoplasms/genetics , Lymphokines/genetics , Lymphokines/immunology , Platelet-Derived Growth Factor/genetics , Platelet-Derived Growth Factor/immunology , RNA, Small Interfering/genetics , Receptor, Platelet-Derived Growth Factor alpha/antagonists & inhibitors , Receptor, Platelet-Derived Growth Factor alpha/genetics , Rhabdomyosarcoma/enzymology , Rhabdomyosarcoma/genetics , Sunitinib
5.
Cancer Chemother Pharmacol ; 63(4): 681-9, 2009 Mar.
Article En | MEDLINE | ID: mdl-18587580

Previous studies have identified interleukin 6 (IL-6) as an important cytokine with prognostic significance in ovarian cancer. Activation of the IL-6-Stat3 pathway contributes to tumor cell growth, survival and drug resistance in several cancers, including ovarian cancer. To explore potential therapeutic strategies for interrupting signaling through this pathway, we assessed the ability of CDDO-Me, a synthetic triterpenoid, to inhibit IL-6 secretion, Stat3 phosphorylation, Stat3 nuclear translocation and paclitaxel sensitivity in several cell line model systems. These studies demonstrated that CDDO-Me significantly inhibits IL-6 secretion in paclitaxel-resistant ovarian cancer cells and specifically suppresses IL-6- or oncostatin M-induced Stat3 nuclear translocation. Treatment with CDDO-Me significantly decreases the levels of Stat3, Jak2, and Src phosphorylation in ovarian and breast cancer cell lines with constitutively activated Stat3. This inhibition of the IL-6-Stat3 pathway correlated with suppression of the anti-apoptotic Stat3 target genes Bcl-X(L), survivin, and Mcl-1, and with apoptosis induction as measured by monitoring PARP and its cleavage product, as well as by quantitative measurement of the apoptosis-associated CK18Asp396. Furthermore, CDDO-Me increases the cytotoxic effects of paclitaxel in the paclitaxel-resistant ovarian cancer cell line OVCAR8(TR) (2 to 5-fold) and of cisplatin in the cisplatin-resistant ovarian cancer cell line A2780cp70 (2 to 4-fold). Our data confirm that CDDO-Me interrupts the signaling of multiple kinases involved in the IL-6-Stat3 and Src signaling pathways. Inhibition is likely achieved through multiple points within these pathways. In a model system of established acquired drug resistance, CCDO-Me is effective at partially reversing the drug-resistance phenotype.


Drug Resistance, Multiple , Drug Resistance, Neoplasm , Interleukin-6/metabolism , Oleanolic Acid/analogs & derivatives , Ovarian Neoplasms/drug therapy , STAT3 Transcription Factor/metabolism , Apoptosis/drug effects , Blotting, Western , Cell Proliferation/drug effects , Female , Humans , Interleukin-6/antagonists & inhibitors , Oleanolic Acid/pharmacology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Phosphorylation/drug effects , Protein Transport , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , STAT3 Transcription Factor/genetics , Signal Transduction , Tumor Cells, Cultured
6.
Mol Cancer Ther ; 7(8): 2377-85, 2008 Aug.
Article En | MEDLINE | ID: mdl-18687998

Published reports implicate a variety of mechanisms that may contribute to drug resistance in ovarian cancer. The chief aim of this study is to understand the relationship between overexpression of drug resistance associated genes and multidrug resistance in ovarian cancer. Using lentiviral short hairpin RNA collections targeting 132 genes identified from transcriptional profiling of drug-resistant cancer cell lines, individual knockdown experiments were done in the presence of sublethal doses of paclitaxel. Specific genes whose knockdown was found to be associated with cellular toxicity included MDR1 (ABCB1), survivin, and pre-mRNA processing factor-4 (PRP-4). These genes, when repressed, can reverse paclitaxel resistance in the multidrug-resistant cell line SKOV-3(TR) and OVCAR8(TR). Both MDR1 and survivin have been reported previously to play a role in multidrug resistance and chemotherapy-induced apoptosis; however, the effect of PRP-4 expression on drug sensitivity is currently unrecognized. PRP-4 belongs to the serine/threonine protein kinase family, plays a role in pre-mRNA splicing and cell mitosis, and interacts with CLK1. Northern analysis shows that PRP-4 is overexpressed in several paclitaxel-resistant cell lines and confirms that PRP-4 expression could be significantly repressed by PRP-4 lentiviral short hairpin RNA. Both clonogenic and MTT assays confirm that transcriptional repression of PRP-4 could reverse paclitaxel resistance 5-10-fold in SKOV-3(TR). Finally, overexpression of PRP-4 in drug-sensitive cells could induce a modest level of drug resistance to paclitaxel, doxorubicin, and vincristine.


Antineoplastic Agents, Phytogenic/therapeutic use , Drug Resistance, Multiple/physiology , Lentivirus/genetics , Ovarian Neoplasms/drug therapy , Paclitaxel/therapeutic use , RNA, Viral/genetics , Ribonucleoprotein, U4-U6 Small Nuclear/physiology , Antineoplastic Agents, Phytogenic/pharmacology , Base Sequence , Blotting, Northern , DNA Primers , Female , Humans , Ovarian Neoplasms/pathology , Paclitaxel/pharmacology , Reverse Transcriptase Polymerase Chain Reaction
...