Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
BMC Vet Res ; 20(1): 285, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956597

RESUMEN

Clade 2.3.4.4b highly pathogenic avian influenza (HPAI) H5N1 virus was detected in the South American sea lions found dead in Santa Catarina, Brazil, in October 2023. Whole genome sequencing and comparative phylogenetic analysis were conducted to investigate the origin, genetic diversity, and zoonotic potentials of the H5N1 viruses. The H5N1 viruses belonged to the genotype B3.2 of clade 2.3.4.4b H5N1 virus, which was identified in North America and disseminated to South America. They have acquired new amino acid substitutions related to mammalian host affinity. Our study provides insights into the genetic landscape of HPAI H5N1 viruses in Brazil, highlighting the continuous evolutionary processes contributing to their possible adaptation to mammalian hosts.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Filogenia , Leones Marinos , Secuenciación Completa del Genoma , Animales , Leones Marinos/virología , Brasil , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/clasificación , Infecciones por Orthomyxoviridae/veterinaria , Infecciones por Orthomyxoviridae/virología , Genoma Viral , Genotipo , Variación Genética
2.
Virus Res ; 347: 199415, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38880334

RESUMEN

Our study identified strains of the A/H5N1 virus in analyzed samples of subsistence poultry, wild birds, and mammals, belonging to clade 2.3.4.4b, genotype B3.2, with very high genetic similarity to strains from Chile, Uruguay, and Argentina. This suggests a migratory route for wild birds across the Pacific, explaining the phylogenetic relatedness. The Brazilian samples displayed similarity to strains that had already been previously detected in South America. Phylogeographic analysis suggests transmission of US viruses from Europe and Asia, co-circulating with other lineages in the American continent. As mutations can influence virulence and host specificity, genomic surveillance is essential to detect those changes, especially in critical regions, such as hot spots in the HA, NA, and PB2 sequences. Mutations in the PB2 gene (D701N and Q591K) associated with adaptation and transmission in mammals were detected suggesting a potential zoonotic risk. Nonetheless, resistance to neuraminidase inhibitors (NAIs) was not identified, however, continued surveillance is crucial to detect potential resistance. Our study also mapped the spread of the virus in the Southern hemisphere, identifying possible entry routes and highlighting the importance of surveillance to prevent outbreaks and protect both human and animal populations.

3.
Methods Mol Biol ; 2802: 395-425, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38819566

RESUMEN

The field of viral genomic studies has experienced an unprecedented increase in data volume. New strains of known viruses are constantly being added to the GenBank database and so are completely new species with little or no resemblance to our databases of sequences. In addition to this, metagenomic techniques have the potential to further increase the number and rate of sequenced genomes. Besides, it is important to consider that viruses have a set of unique features that often break down molecular biology dogmas, e.g., the flux of information from RNA to DNA in retroviruses and the use of RNA molecules as genomes. As a result, extracting meaningful information from viral genomes remains a challenge and standard methods for comparing the unknown and our databases of characterized sequences may need adaptations. Thus, several bioinformatic approaches and tools have been created to address the challenge of analyzing viral data. This chapter offers descriptions and protocols of some of the most important bioinformatic techniques for comparative analysis of viruses. The authors also provide comments and discussion on how viruses' unique features can affect standard analyses and how to overcome some of the major sources of problems. Protocols and topics emphasize online tools (which are more accessible to users) and give the real experience of what most bioinformaticians do in day-by-day work with command-line pipelines. The topics discussed include (1) clustering related genomes, (2) whole genome multiple sequence alignments for small RNA viruses, (3) protein alignment for marker genes and species affiliation, (4) variant calling and annotation, and (5) virome analyses and pathogen identification.


Asunto(s)
Biología Computacional , Genoma Viral , Virus , Biología Computacional/métodos , Virus/genética , Virus/clasificación , Programas Informáticos , Bases de Datos Genéticas
4.
Methods Mol Biol ; 2802: 427-453, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38819567

RESUMEN

Bacterial viruses (bacteriophages or phages) are the most abundant and diverse biological entities on Earth. There is a renewed worldwide interest in phage-centered research motivated by their enormous potential as antimicrobials to cope with multidrug-resistant pathogens. An ever-growing number of complete phage genomes are becoming available, derived either from newly isolated phages (cultivated phages) or recovered from metagenomic sequencing data (uncultivated phages). Robust comparative analysis is crucial for a comprehensive understanding of genotypic variations of phages and their related evolutionary processes, and to investigate the interaction mechanisms between phages and their hosts. In this chapter, we present a protocol for phage comparative genomics employing tools selected out of the many currently available, focusing on complete genomes of phages classified in the class Caudoviricetes. This protocol provides accurate identification of similarities, differences, and patterns among new and previously known complete phage genomes as well as phage clustering and taxonomic classification.


Asunto(s)
Bacteriófagos , Genoma Viral , Genómica , Genoma Viral/genética , Bacteriófagos/genética , Bacteriófagos/clasificación , Genómica/métodos , Filogenia , Biología Computacional/métodos , Metagenómica/métodos
5.
PLoS One ; 19(5): e0300862, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38739614

RESUMEN

Influenza A viruses of the H2 subtype represent a zoonotic and pandemic threat to humans due to a lack of widespread specific immunity. Although A(H2) viruses that circulate in wild bird reservoirs are distinct from the 1957 pandemic A(H2N2) viruses, there is concern that they could impact animal and public health. There is limited information on AIVs in Latin America, and next to nothing about H2 subtypes in Brazil. In the present study, we report the occurrence and genomic sequences of two influenza A viruses isolated from wild-caught white-rumped sandpipers (Calidris fuscicollis). One virus, identified as A(H2N1), was isolated from a bird captured in Restinga de Jurubatiba National Park (PNRJ, Rio de Janeiro), while the other, identified as A(H2N2), was isolated from a bird captured in Lagoa do Peixe National Park (PNLP, Rio Grande do Sul). DNA sequencing and phylogenetic analysis of the obtained sequences revealed that each virus belonged to distinct subtypes. Furthermore, the phylogenetic analysis indicated that the genomic sequence of the A(H2N1) virus isolated from PNRJ was most closely related to other A(H2N1) viruses isolated from North American birds. On the other hand, the A(H2N2) virus genome recovered from the PNLP-captured bird exhibited a more diverse origin, with some sequences closely related to viruses from Iceland and North America, and others showing similarity to virus sequences recovered from birds in South America. Viral genes of diverse origins were identified in one of the viruses, indicating local reassortment. This suggests that the extreme South of Brazil may serve as an environment conducive to reassortment between avian influenza virus lineages from North and South America, potentially contributing to an increase in overall viral diversity.


Asunto(s)
Charadriiformes , Virus de la Influenza A , Gripe Aviar , Filogenia , Virus Reordenados , Animales , Brasil , Gripe Aviar/virología , Gripe Aviar/epidemiología , Virus de la Influenza A/genética , Virus de la Influenza A/aislamiento & purificación , Virus Reordenados/genética , Virus Reordenados/aislamiento & purificación , Charadriiformes/virología , Genoma Viral , Aves/virología
7.
Sci Rep ; 14(1): 7913, 2024 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575625

RESUMEN

Bacteriophages are recognized as the most abundant members of microbiomes and have therefore a profound impact on microbial communities through the interactions with their bacterial hosts. The International Metagenomics and Metadesign of Subways and Urban Biomes Consortium (MetaSUB) has sampled mass-transit systems in 60 cities over 3 years using metagenomics, throwing light into these hitherto largely unexplored urban environments. MetaSUB focused primarily on the bacterial community. In this work, we explored MetaSUB metagenomic data in order to recover and analyze bacteriophage genomes. We recovered and analyzed 1714 phage genomes with size at least 40 kbp, from the class Caudoviricetes, the vast majority of which (80%) are novel. The recovered genomes were predicted to belong to temperate (69%) and lytic (31%) phages. Thirty-three of these genomes have more than 200 kbp, and one of them reaches 572 kbp, placing it among the largest phage genomes ever found. In general, the phages tended to be site-specific or nearly so, but 194 genomes could be identified in every city from which phage genomes were retrieved. We predicted hosts for 48% of the phages and observed general agreement between phage abundance and the respective bacterial host abundance, which include the most common nosocomial multidrug-resistant pathogens. A small fraction of the phage genomes are carriers of antibiotic resistance genes, and such genomes tended to be particularly abundant in the sites where they were found. We also detected CRISPR-Cas systems in five phage genomes. This study expands the previously reported MetaSUB results and is a contribution to the knowledge about phage diversity, global distribution, and phage genome content.


Asunto(s)
Bacteriófagos , Microbiota , Vías Férreas , Bacteriófagos/genética , Microbiota/genética , Metagenoma/genética , Bacterias/genética
8.
Vaccines (Basel) ; 12(2)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38400128

RESUMEN

The recently emerged SARS-CoV-2 Omicron sublineages, including the BA.2-derived XBB.1.5 (Kraken), XBB.1.16 (Arcturus), and EG.5.1 (Eris), have accumulated several spike mutations that may increase immune escape, affecting vaccine effectiveness. Older adults are an understudied group at significantly increased risk of severe COVID-19. Here we report the neutralizing activities of 177 sera samples from 59 older adults, aged 62-97 years, 1 and 4 months after vaccination with a 4th dose of ChAdOx1-S (Oxford/AstraZeneca) and 3 months after a 5th dose of Comirnaty Bivalent Original/Omicron BA.4/BA.5 vaccine (Pfizer-BioNTech). The ChAdOx1-S vaccination-induced antibodies neutralized efficiently the ancestral D614G and BA.4/5 variants, but to a much lesser extent the XBB.1.5, XBB.1.16, and EG.5.1 variants. The results showed similar neutralization titers between XBB.1.16 and EG.5.1 and were lower compared to XBB.1.5. Sera from the same individuals boosted with the bivalent mRNA vaccine contained higher neutralizing antibody titers, providing a better cross-protection against Omicron XBB.1.5, XBB.1.16 and EG.5.1 variants. Previous history of infection during the epidemiological waves of BA.1/BA.2 and BA.4/BA.5, poorly enhanced neutralization activity of serum samples against XBBs and EG.5.1 variants. Our data highlight the continued immune evasion of recent Omicron subvariants and support the booster administration of BA.4/5 bivalent vaccine, as a continuous strategy of updating future vaccine booster doses to match newly emerged SARS-CoV-2 variants.

9.
Emerg Infect Dis ; 30(3): 619-621, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38290826

RESUMEN

We report 4 highly pathogenic avian influenza A(H5N1) clade 2.3.4.4.b viruses in samples collected during June 2023 from Royal terns and Cabot's terns in Brazil. Phylodynamic analysis revealed viral movement from Peru to Brazil, indicating a concerning spread of this clade along the Atlantic Americas migratory bird flyway.


Asunto(s)
Charadriiformes , Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Gripe Humana , Animales , Humanos , Gripe Aviar/epidemiología , Animales Salvajes , Brasil/epidemiología , Aves , Filogenia
10.
Vet Anim Sci ; 22: 100319, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38022721

RESUMEN

In 2021, the H5N1 virus lineage 2.3.4.4b spread to the Americas, causing high mortality in wild and domestic avian populations. South American countries along the Pacific migratory route have reported wild bird deaths due to A/H5Nx virus since October 2022. However, limited genomic data resulted in no cases reported in Brazil until May 2023. Brazil reported its first case of highly pathogenic avian influenza virus (HPAI A/H5N1) in May 2023. The virus was detected in Cabot's tern specimen in Marataízes, Espírito Santo. Cases were also found in backyard poultry and other wild birds, but no human or commercial poultry cases occurred. HPAI poses risks to the poultry industry, food security, and public health. Researchers used next-gen sequencing and phylogenetic analysis to study the Brazilian sample. It confirmed its affiliation with the 2.3.4.4b clade and proximity to sequences from Chile and Peru. This sheds light on the spread and evolution of HPAI A/H5N1 in the Americas, emphasizing continuous monitoring to mitigate risks for both avian and human populations. Understanding the virus's genetics and transmission allows implementing effective control measures to protect public health and the poultry industry.

11.
BMC Infect Dis ; 23(1): 714, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872472

RESUMEN

BACKGROUND: Since its beginning, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has been a challenge for clinical and molecular diagnostics, because it has been caused by a novel viral agent. Whole-genome sequencing assisted in the characterization and classification of SARS-CoV-2, and it is an essential tool to genomic surveillance aiming to identify potentials hot spots that could impact on vaccine immune response and on virus diagnosis. We describe two cases of failure at the N2 target of the RT-PCR test Xpert® Xpress SARS-CoV-2. METHODS: Total nucleic acid from the Nasopharyngeal (NP) and oropharyngeal (OP) swab samples and cell supernatant isolates were obtained. RNA samples were submitted to random amplification. Raw sequencing data were subjected to sequence quality controls, removal of human contaminants by aligning against the HG19 reference genome, taxonomic identification of other pathogens and genome recovery through assembly and manual curation. RT-PCR test Xpert® Xpress SARS-CoV-2 was used for molecular diagnosis of SARS-CoV-2 infection, samples were tested in duplicates. RESULTS: We identified 27 samples positive for SARS-CoV-2 with a nucleocapsid (N) gene drop out on Cepheid Xpert® Xpress SARS-CoV-2 assay. Sequencing of 2 of 27 samples revealed a single common mutation in the N gene C29197T, potentially involved in the failed detection of N target. CONCLUSIONS: This study highlights the importance of genomic data to update molecular tests and vaccines.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sensibilidad y Especificidad , Nucleocápside/genética , Mutación , Prueba de COVID-19
12.
Artículo en Inglés | MEDLINE | ID: mdl-37396193

RESUMEN

Objective: To compare the long-term vaccine effectiveness between those receiving viral vector [Oxford-AstraZeneca (ChAdOx1)] or inactivated viral (CoronaVac) primary series (2 doses) and those who received an mRNA booster (Pfizer/BioNTech) (the third dose) among healthcare workers (HCWs). Methods: We conducted a retrospective cohort study among HCWs (aged ≥18 years) in Brazil from January 2021 to July 2022. To assess the variation in the effectiveness of booster dose over time, we estimated the effectiveness rate by taking the log risk ratio as a function of time. Results: Of 14,532 HCWs, coronavirus disease 2019 (COVID-19) was confirmed in 56.3% of HCWs receiving 2 doses of CoronaVac vaccine versus 23.2% of HCWs receiving 2 doses of CoronaVac vaccine with mRNA booster (P < .001), and 37.1% of HCWs receiving 2 doses of ChAdOx1 vaccine versus 22.7% among HCWs receiving 2 doses of ChAdOx1 vaccine with mRNA booster (P < .001). The highest vaccine effectiveness with mRNA booster was observed 30 days after vaccination: 91% for the CoronaVac vaccine group and 97% for the ChAdOx1 vaccine group. Vacine effectiveness declined to 55% and 67%, respectively, at 180 days. Of 430 samples screened for mutations, 49.5% were SARS-CoV-2 delta variants and 34.2% were SARS-CoV-2 omicron variants. Conclusions: Heterologous COVID-19 vaccines were effective for up to 180 days in preventing COVID-19 in the SARS-CoV-2 delta and omicron variant eras, which suggests the need for a second booster.

13.
Infect Control Hosp Epidemiol ; 44(12): 1972-1978, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37272468

RESUMEN

OBJECTIVE: To determine risk factors for the development of long coronavirus disease 2019 (COVID-19) in healthcare personnel (HCP). METHODS: We conducted a case-control study among HCP who had confirmed symptomatic COVID-19 working in a Brazilian healthcare system between March 1, 2020, and July 15, 2022. Cases were defined as those having long COVID according to the Centers for Disease Control and Prevention definition. Controls were defined as HCP who had documented COVID-19 but did not develop long COVID. Multiple logistic regression was used to assess the association between exposure variables and long COVID during 180 days of follow-up. RESULTS: Of 7,051 HCP diagnosed with COVID-19, 1,933 (27.4%) who developed long COVID were compared to 5,118 (72.6%) who did not. The majority of those with long COVID (51.8%) had 3 or more symptoms. Factors associated with the development of long COVID were female sex (OR, 1.21; 95% CI, 1.05-1.39), age (OR, 1.01; 95% CI, 1.00-1.02), and 2 or more SARS-CoV-2 infections (OR, 1.27; 95% CI, 1.07-1.50). Those infected with the SARS-CoV-2 δ (delta) variant (OR, 0.30; 95% CI, 0.17-0.50) or the SARS-CoV-2 o (omicron) variant (OR, 0.49; 95% CI, 0.30-0.78), and those receiving 4 COVID-19 vaccine doses prior to infection (OR, 0.05; 95% CI, 0.01-0.19) were significantly less likely to develop long COVID. CONCLUSIONS: Long COVID can be prevalent among HCP. Acquiring >1 SARS-CoV-2 infection was a major risk factor for long COVID, while maintenance of immunity via vaccination was highly protective.


Asunto(s)
COVID-19 , Humanos , Femenino , Masculino , COVID-19/epidemiología , SARS-CoV-2 , Síndrome Post Agudo de COVID-19 , Brasil/epidemiología , Vacunas contra la COVID-19 , Estudios de Casos y Controles , Factores de Riesgo
14.
Viruses ; 15(2)2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36851548

RESUMEN

Hepatitis E virus (HEV) is an emerging zoonotic pathogen associated with relevant public health issues. The aim of this study was to investigate HEV presence in free-living capybaras inhabiting urban parks in São Paulo state, Brazil. Molecular characterization of HEV positive samples was undertaken to elucidate the genetic diversity of the virus in these animals. A total of 337 fecal samples were screened for HEV using RT-qPCR and further confirmed by conventional nested RT-PCR. HEV genotype and subtype were determined using Sanger and next-generation sequencing. HEV was detected in one specimen (0.3%) and assigned as HEV-3f. The IAL-HEV_921 HEV-3f strain showed a close relationship to European swine, wild boar and human strains (90.7-93.2% nt), suggesting an interspecies transmission. Molecular epidemiology of HEV is poorly investigated in Brazil; subtype 3f has been reported in swine. This is the first report of HEV detected in capybara stool samples worldwide.


Asunto(s)
Virus de la Hepatitis E , Humanos , Animales , Porcinos , Brasil/epidemiología , Virus de la Hepatitis E/genética , Roedores , Heces , Genotipo
15.
Infect Control Hosp Epidemiol ; 44(1): 75-81, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35351217

RESUMEN

OBJECTIVE: We investigated real-world vaccine effectiveness for Oxford-AstraZeneca (ChAdOx1) and CoronaVac against laboratory-confirmed severe acute respiratory coronavirus virus 2 (SARS-CoV-2) infection among healthcare workers (HCWs). METHODS: We conducted a retrospective cohort study among HCWs (aged ≥18 years) working in a private healthcare system in Brazil between January 1, 2021 and August 3, 2021, to assess vaccine effectiveness. We calculated vaccine effectiveness as 1 - rate ratio (RR), with RR determined by adjusting Poisson models with the occurrence of SARS-CoV-2 infection as the outcome and the vaccination status as the main variable. We used the logarithmic link function and simple models adjusting for sex, age, and job types. RESULTS: In total, 13,813 HCWs met the inclusion criteria for this analysis. Among them, 6,385 (46.2%) received the CoronaVac vaccine, 5,916 (42.8%) received the ChAdOx1 vaccine, and 1,512 (11.0%) were not vaccinated. Overall, COVID-19 occurred in 6% of unvaccinated HCWs, 3% of HCWs who received 2 doses of CoronaVac vaccine, and 0.7% of HCWs who received 2 doses of ChAdOx1 vaccine (P < .001). In the adjusted analyses, the estimated vaccine effectiveness rates were 51.3% for CoronaVac, and 88.1% for ChAdOx1 vaccine. Both vaccines reduced the number of hospitalizations, the length of hospital stay, and the need for mechanical ventilation. In addition, 19 SARS-CoV-2 samples from 19 HCWs were screened for mutations of interest. Of 19 samples, 18 were the γ (gamma) variant. CONCLUSIONS: Although both COVID-19 vaccines (viral vector and inactivated virus) can significantly prevent COVID-19 among HCWs, CoronaVac was much less effective. The COVID-19 vaccines were also effective against the dominant γ variant.


Asunto(s)
COVID-19 , Neumonía , Humanos , Adolescente , Adulto , Vacunas contra la COVID-19 , Estudios Retrospectivos , SARS-CoV-2 , COVID-19/prevención & control , Personal de Salud
16.
Clin Infect Dis ; 76(3): e360-e366, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35639918

RESUMEN

BACKGROUND: Little is currently known about vaccine effectiveness (VE) for either 2 doses of Oxford-AstraZeneca (ChAdOx1) viral vector vaccine or CoronaVac (Instituto Butantan) inactivated viral vaccine followed by a third dose of mRNA vaccine (Pfizer/BioNTech) among healthcare workers (HCWs). METHODS: We conducted a retrospective cohort study among HCWs (aged ≥18 years) working in a private healthcare system in Brazil from January to December 2021. VE was defined as 1 - incidence rate ratio (IRR), with IRR determined using Poisson models with the occurrence of laboratory-confirmed coronavirus disease 2019 (COVID-19) infection as the outcome, adjusting for age, sex, and job type. We compared those receiving viral vector or inactivated viral primary series (2 doses) with those who received an mRNA booster. RESULTS: A total of 11 427 HCWs met the inclusion criteria. COVID-19 was confirmed in 31.5% of HCWs receiving 2 doses of CoronaVac vaccine versus 0.9% of HCWs receiving 2 doses of CoronaVac vaccine with mRNA booster (P < .001) and 9.8% of HCWs receiving 2 doses of ChAdOx1 vaccine versus 1% among HCWs receiving 2 doses of ChAdOx1 vaccine with mRNA booster (P < .001). In the adjusted analyses, the estimated VE was 92.0% for 2 CoronaVac vaccines plus mRNA booster and 60.2% for 2 ChAdOx1 vaccines plus mRNA booster, when compared with those with no mRNA booster. Of 246 samples screened for mutations, 191 (77.6%) were Delta variants. CONCLUSIONS: While 2 doses of ChAdOx1 or CoronaVac vaccines prevent COVID-19, the addition of a Pfizer/BioNTech booster provided significantly more protection.


Asunto(s)
COVID-19 , Vacunas Virales , Humanos , Adolescente , Adulto , Brasil/epidemiología , Estudios Retrospectivos , COVID-19/epidemiología , COVID-19/prevención & control , SARS-CoV-2 , Personal de Salud , ARN Mensajero
17.
Front Microbiol ; 13: 811318, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35633726

RESUMEN

The recent outbreak of yellow fever (YF) in São Paulo during 2016-2019 has been one of the most severe in the last decades, spreading to areas with low vaccine coverage. The aim of this study was to assess the genetic diversity of the yellow fever virus (YFV) from São Paulo 2016-2019 outbreak, integrating the available genomic data with new genomes from patients from the Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP). Using phylodynamics, we proposed the existence of new IE subclades, described their sequence signatures, and determined their locations and time of origin. Plasma or urine samples from acute severe YF cases (n = 56) with polymerase chain reaction (PCR) positive to YFV were submitted to viral genome amplification using 12 sets of primers. Thirty-nine amplified genomes were subsequently sequenced using next-generation sequencing (NGS). These 39 sequences, together with all the complete genomes publicly available, were aligned and used to determine nucleotide/amino acids substitutions and perform phylogenetic and phylodynamic analysis. All YFV genomes generated in this study belonged to the genotype South American I subgroup E. Twenty-one non-synonymous substitutions were identified among the new generated genomes. We analyzed two major clades of the genotypes IE, IE1, and IE2 and proposed the existence of subclades based on their sequence signatures. Also, we described the location and time of origin of these subclades. Overall, our findings provide an overview of YFV genomic characterization and phylodynamics of the 2016-2019 outbreak contributing to future virological and epidemiological studies.

18.
Phage (New Rochelle) ; 3(4): 204-212, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36793881

RESUMEN

Background: The experimental determination of a bacteriophage host is a laborious procedure. Thus, there is a pressing need for reliable computational predictions of bacteriophage hosts. Materials and Methods: We developed the program vHULK for phage host prediction based on 9504 phage genome features, which consider alignment significance scores between predicted proteins and a curated database of viral protein families. The features were fed to a neural network, and two models were trained to predict 77 host genera and 118 host species. Results: In controlled random test sets with 90% redundancy reduction in terms of protein similarity, vHULK obtained on average 83% precision and 79% recall at the genus level, and 71% precision and 67% recall at the species level. The performance of vHULK was compared against three other tools on a test data set with 2153 phage genomes. On this data set, vHULK achieved better performance at both the genus and the species levels than the other tools. Conclusions: Our results suggest that vHULK represents an advance on the state of art in phage host prediction.

19.
Environ Microbiol Rep ; 13(3): 348-354, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34018688

RESUMEN

Viruses are now recognized as important players in microbial dynamics and biogeochemical cycles in the oceans. Yet, compared with aquatic ecosystems, virus discovery in terrestrial ecosystems has been challenging partly due to the inherent complexity of soils. To expand our understanding of soil viruses and their putative contributions to soil microbial processes, we analysed metagenomes of community-level virus-enriched suspensions by tangential flow filtration obtained from two French agricultural soils. We found viral sequences representing a total of 239 viral operational taxonomic units that corresponded to 29.5% of the mapping reads in the metagenomic datasets. The analysis of their genomic sequences revealed novel virocell metabolic potential with implications to virus-host interactions, carbon cycling, plant-beneficial functions in the rhizosphere, horizontal gene transfer and other relevant microbial strategies applied to survive in soils.


Asunto(s)
Metagenoma , Virus , Ecosistema , Rizosfera , Suelo , Virus/genética
20.
Sci Rep ; 11(1): 7122, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33782491

RESUMEN

Since the first reported case of the new coronavirus infection in Wuhan, China, researchers and governments have witnessed an unseen rise in the number of cases. Thanks to the rapid work of Chinese scientists, the pathogen now called SARS-CoV-2 has been identified and its whole genome was deposited in public databases by early January 2020. The availability of the genome has allowed researchers to develop Reverse Transcription-Polymerase Chain Reaction (RT-PCR) assays, which are now the gold-standard for molecular diagnosis of the respiratory syndrome COVID19. Because of the rising number of cases and rapid spreading, the world has been facing a shortage of RT-PCR supplies, especially the ones involved in RNA extraction. This has been a major bottleneck to increase testing capacity in many countries that do not significantly manufacture these supplies, such as Brazil. Additionally, RT-qPCR scalability is highly dependent on equipment that usually performs testing of 96 samples at a time. In this work, we describe a cost-effective molecular NGS-based test for diagnosis of COVID19, which uses a single-step RNA extraction and presents high scalability and accuracy when compared to the gold-standard RT-qPCR. A single run of the NGS-based test using the Illumina NextSeq 550 mid-end sequencing equipment is able to multiplex 1,536 patient's samples, providing individual semi-qualitative results (detected, not detected). Detected results are provided with fragments per million (FPM) values, which was demonstrated to correlate with RT-qPCR Cycle Threshold (CT) values. Besides, usage of the high-end Illumina Novaseq platform may yield diagnostic for up to 6144 samples in a single run. Performance results when compared with RT-qPCR show general accuracy of 96%, and 98% when only samples with CT values (gene N) lower than 30 are considered. We have also developed an online platform, termed VarsVID, to help test executors to easily scale testing numbers. Sample registering, wet-lab worksheets generation, sample sheet for sequencing and results' display are all features provided by VarsVID. Altogether, these results will contribute to control COVID19 pandemics.


Asunto(s)
Prueba de COVID-19/métodos , COVID-19/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Técnicas de Diagnóstico Molecular/métodos , COVID-19/virología , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , SARS-CoV-2/aislamiento & purificación , Sensibilidad y Especificidad , Flujo de Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...