Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Sr Care Pharm ; 39(4): 137-142, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38528335

The objective of this case report is to illustrate pharmacogenomics (PGx)-guided oxycodone treatment, given the conflicting data on the analgesic response from oxycodone in Cytochrome P450 (CYP)2D6 poor metabolizers (PMs). PGx-guided therapy can help improve treatment outcomes. This case report describes a 58-year-old patient who was prescribed oxycodone for chronic pain management. The patient presented with a history of inadequate pain control despite analgesic treatment with oxycodone (morphine milliequivalent [MME] = 22.5). Pharmacogenetic testing revealed that the patient was a CYP2D6 Poor Metabolizer (PM), which may shed light on the observed lack of analgesic response to oxycodone. The clinical pharmacist recommended switching to an alternative opioid not metabolized via the CYP2D6 pathway. The patient was subsequently switched to hydromorphone (MME = 16), resulting in improved pain control and fewer side effects. The newer hydromorphone dose accounted for a 30% MME dose reduction. The patient's initial average and worst pain score were 7 and 9 out of 10, respectively, per the numeric rating scale (NRS). Upon follow-up with the patient in two weeks, her average and worst pain scores improved to 3 and 3.5 out of 10, respectively, per the NRS. Further PGx testing results led to an overall positive outcome, such as her willingness to participate in physical therapy as a result of improved pain scores. This case highlights the importance of considering individual variability in drug metabolism when prescribing medications, particularly opioids such as oxycodone, to ensure optimal therapeutic outcomes and minimize the risk of adverse events in CYP2D6 PMs.


Cytochrome P-450 CYP2D6 , Endrin/analogs & derivatives , Oxycodone , Humans , Female , Oxycodone/therapeutic use , Oxycodone/adverse effects , Cytochrome P-450 CYP2D6/genetics , Cytochrome P-450 CYP2D6/metabolism , Cytochrome P-450 CYP2D6/therapeutic use , Hydromorphone/therapeutic use , Pain Management , Analgesics, Opioid/therapeutic use , Analgesics, Opioid/adverse effects , Pain/drug therapy
2.
Sr Care Pharm ; 39(4): 143-150, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38528337

The case discussion demonstrates the benefit of using Pharmacogenomic (PGx) results to aid in the selection of antidepressant therapy and improve response to treatment. Nearly half of patients diagnosed with major depressive disorder fail initial therapy and may require multiple trials of antidepressants. Genetic variation in several metabolic enzymes contribute to the variable response to antidepressant therapy. PGx testing provides an opportunity to inform antidepressant selection and optimize therapeutic outcomes, while minimizing risk of adverse events. A 79-year-old female who had been experiencing a suboptimal response to escitalopram following dose escalation over a period of three years was referred for a PGx consultation. A clinical pharmacist assessed significant drug-gene, drug-drug, and drug-drug-gene interactions, and relevant clinical information to recommend alternative antidepressant therapy, which resulted in mood improvement.


Depressive Disorder, Major , Female , Humans , Aged , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/genetics , Depressive Disorder, Major/chemically induced , Pharmacogenetics , Antidepressive Agents/therapeutic use , Psychotherapy , Escitalopram
3.
Sr Care Pharm ; 39(4): 151-158, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38528333

The objective of this aims to demonstrate the advantage of a pharmacogenomics (PGx)-informed medication review in mitigating adverse drug events (ADEs) and optimizing therapeutic outcomes. PGx testing and PGx-informed medication reviews assist in mitigating ADEs. PGx testing was performed on a 68-year-old male presenting with uncontrolled chronic pain. The PGx results highlighted a drug-gene interaction, aiding in identification of the increased risk of statin-associated muscle symptoms (SAMS) attributing to uncontrolled chronic pain. This patient case report illustrates how incorporating PGx results can help improve chronic pain and mitigate ADEs, such as SAMS.


Chronic Pain , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Male , Humans , Aged , Pharmacogenetics/methods , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Muscles
4.
J Pers Med ; 12(6)2022 Jun 15.
Article En | MEDLINE | ID: mdl-35743759

Utilizing pharmacogenomics (PGx) and integrating drug-induced phenoconversion to guide opioid therapies could improve the treatment response and decrease the occurrence of adverse drug events. Genetics contribute to the interindividual differences in opioid response. The purpose of this case report highlights the impact of a PGx-informed medication safety review, assisted by a clinical decision support system, in mitigating the drug-gene and drug-drug-gene interactions (DGI and DDGI, respectively) that increase the risk of an inadequate drug response and adverse drug events (ADEs). This case describes a 69-year-old female who was referred for PGx testing for uncontrolled chronic pain caused by osteoarthritis and neuropathy. The clinical pharmacist reviewed the PGx test results and medication regimen and identified several (DGIs and DDGIs, respectively) at Cytochrome P450 (CYP) 2C19 and CYP2D6. The recommendations were to: (1) switch tramadol to buprenorphine transdermal patch, an opioid with lower potential for ADEs, to mitigate a CYP2D6 DDGI; (2) gradually discontinue amitriptyline to alleviate the risk of anticholinergic side effects, ADEs, and multiple DDGIs; and (3) optimize the pregabalin. The provider and the patient agreed to implement these recommendations. Upon follow-up one month later, the patient reported an improved quality of life and pain control. Following the amitriptyline taper, the patient experienced tremors in the upper and lower extremities. When the perpetrator drug, omeprazole, was stopped, the metabolic capacity was no longer impeded; the patient experienced possible amitriptyline withdrawal symptoms due to the rapid withdrawal of amitriptyline, which was reinitiated and tapered off more slowly. This case report demonstrates a successful PGx-informed medication safety review that considered drug-induced phenoconversion and mitigated the risks of pharmacotherapy failure, ADEs, and opioid misuse.

5.
Front Cardiovasc Med ; 8: 789931, 2021.
Article En | MEDLINE | ID: mdl-34869702

Low-density lipoprotein cholesterol (LDL-C) is a modifiable risk factor for the development of atherosclerotic cardiovascular disease. Statins have been the gold standard for managing cholesterol levels and reducing the risks associated with atherosclerotic cardiovascular disease; however, many patients do not achieve their cholesterol goals or are unable to tolerate this drug class due to adverse drug events. Recent studies of non-statin cholesterol lowering drugs (i.e., ezetimibe, PCSK9 inhibitors) have demonstrated cardiovascular benefits; and new drugs [i.e., bempedoic acid (BDA), inclisiran] have produced promising results in pre-clinical and clinical outcome trials. This narrative review aims to discuss the place in therapy of ezetimibe, PCSK9 inhibitors, BDA, and inclisiran and describe their relative pharmacokinetic (PK) profiles, efficacy and safety as monotherapy and combination therapy, and cardiovascular benefit(s) when used for hypercholesterolemia.

6.
Medicina (Kaunas) ; 57(9)2021 Sep 10.
Article En | MEDLINE | ID: mdl-34577878

Pharmacogenomic (PGx) information can guide drug and dose selection, optimize therapy outcomes, and/or decrease the risk of adverse drug events (ADEs). This report demonstrates the impact of a pharmacist-led medication evaluation, with PGx assisted by a clinical decision support system (CDSS), of a patient with multiple comorbidities. Following several sub-optimal pharmacotherapy attempts, PGx testing was recommended. The results were integrated into the CDSS, which supported the identification of clinically significant drug-drug, drug-gene, and drug-drug-gene interactions that led to the phenoconversion of cytochrome P450. The pharmacist evaluated PGx results, concomitant medications, and patient-specific factors to address medication-related problems. The results identified the patient as a CYP2D6 intermediate metabolizer (IM). Duloxetine-mediated competitive inhibition of CYP2D6 resulted in phenoconversion, whereby the patient's CYP2D6 phenotype was converted from IM to poor metabolizer for CYP2D6 co-medication. The medication risk score suggested a high risk of ADEs. Recommendations that accounted for PGx and drug-induced phenoconversion were accepted. After 1.5 months, therapy changes led to improved pain control, depression status, and quality of life, as well as increased heart rate, evidenced by patient-reported improved sleep patterns, movement, and cognition. This case highlights the pharmacist's role in using PGx testing and a CDSS to identify and mitigate medication-related problems to optimize medication regimen and medication safety.


Pharmaceutical Preparations , Pharmacogenetics , Cytochrome P-450 CYP2D6 , Humans , Pharmacists , Quality of Life
...