Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Steroid Biochem Mol Biol ; 240: 106509, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38508473

RESUMEN

Hyperglycemia is known as one of the main causes of infertility in human societies. Indole propionic acid (IPA) is produced by intestinal microbiota and has antioxidant and anti-inflammatory properties. This study aims to investigate the effects of IPA on molecular indices of steroidogenesis, ER stress, and apoptosis induced by high glucose (HG) in granulosa cells. Primary GCs, isolated from ovarian follicles of Rats were cultured in 5 mM (control) and 30 mM (HG) of glucose and in the presence of 10 and 20 µM of IPA for 24 h. The cell viability was assessed by MTT. The gene expression of P450SCC, 3ßHSD, CYP19A, BAX, BCL2, and STAR was evaluated by Real-Time PCR. Protein expression of ATF6, PERK, GRP78, and CHOP determined by western blot. Progesterone, estradiol, IL-1ß, and TNF-α were measured by ELISA. HG decreased the viability, and expression of P450SCC, 3ßHSD, CYP19A, BCL2, STAR, and increased BAX. 10 and 20 µM of IPA increased cell viability, expression of P450SCC, 3ßHSD, CYP19A, BCL2 and STAR and decreased BAX compared to the HG group. The expression of ATF6, PERK, GRP78, and CHOP proteins increased by HG and IPA decreased the expression of these proteins compared to the HG group. Also, HG decreased progesterone and estradiol levels and increased IL-1ß and TNF-α. IPA significantly increased progesterone and estradiol and decreased IL-1ß and TNF-α compared to the HG group. IPA can improve the side effects of HG in GCs of rats, as responsible cells for fertility, by improving steroidogenesis, regulation of ER-stress pathway, suppression of inflammation, and apoptosis.


Asunto(s)
Apoptosis , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Glucosa , Células de la Granulosa , Indoles , Animales , Femenino , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células de la Granulosa/metabolismo , Células de la Granulosa/efectos de los fármacos , Apoptosis/efectos de los fármacos , Glucosa/metabolismo , Glucosa/farmacología , Ratas , Indoles/farmacología , Supervivencia Celular/efectos de los fármacos , Propionatos/farmacología , Células Cultivadas , Progesterona/metabolismo , Biomarcadores/metabolismo , Ratas Sprague-Dawley
2.
Mol Biol Rep ; 50(12): 9925-9933, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37874507

RESUMEN

BACKGROUND: Metabolic dysregulation and excessive inflammation are implicated in the pathogenesis of the highly infectious disease of coronavirus disease 2019 (COVID-19), which is caused by a newly emerging coronavirus (i.e., severe acute respiratory syndrome-coronavirus 2; SARS-CoV-2). The adenosine 5'-monophosphate-activated protein kinase (AMPK), an energy sensor regulating the metabolic pathways in diverse cells, exerts a regulatory role in the immune system. This study aims to examine the mRNA expression level of AMPK and the plasma levels of interleukin-6 (IL-6) and IL-10 cytokines in patients with different grades of COVID-19. METHODS: Peripheral blood was collected from 60 patients with COVID-19 (Moderate, severe, and critical). The plasma levels of IL-6 and IL-10 were quantified by enzyme-linked immunosorbent assay (ELISA), and the mRNA expression level of AMPK was determined using real-time PCR. RESULTS: The results showed that the plasma levels of IL-6 increased significantly in critical and severe patients compared to moderate cases of COVID-19 (P < 0.001). Moreover, IL-10 plasma concentrations were significantly higher in critical and severe cases than in moderate cases of COVID-19 (P < 0.01 and P < 0.05, respectively). Also, the gene expression of AMPK was meaningfully enhanced in critical patients relative to moderate and severe cases of COVID-19, in order (P < 0.001 and P < 0.01, respectively). There was a positive association between AMPK gene expression and plasma levels of IL-6 and IL-10 (P = 0.006, r = 0.348, P = 0.028, r = 0.283, respectively). CONCLUSION: Increasing AMPK gene expression is likely a necessary effort of the immune system to inhibit inflammation in critical COVID-19. However, this effort seems to be inadequate, probably due to factors that induce inflammation, like erythrocyte sedimentation rate (ESR) and IL-6.


Asunto(s)
COVID-19 , Humanos , COVID-19/genética , Interleucina-6/genética , Interleucina-10/genética , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , SARS-CoV-2/genética , Inflamación , Citocinas/genética , Adenosina Monofosfato , ARN Mensajero , Expresión Génica , Adenosina
3.
Asian Pac J Cancer Prev ; 20(9): 2763-2774, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31554375

RESUMEN

Objective: Interaction of methamphetamine and sigma (σ) receptors lead to up-regulation and activation of these receptors. The σ receptors induced apoptosis in some parts of the brain by increasing calcium, dopamine, ROS, mitochondrial pores and caspase activity. Ibudilast is a phosphodiesterase inhibitor and anti-inflammatory drug, which can decrease the inflammatory cytokines. Also, it has a neuroprotective effect. It seems that ibudilast can reduce the methamphetamine-induced cell death due to inhibition of σ receptors. Materials and Methods: There were seven treatments including; control: culture medium, Treatment 1: 1mM methamphetamine, Treatment 2: 1mM methamphetamine and 1nM ibudilast, Treatment 3: 1mM methamphetamine and 10nM ibudilast, Treatment 4: 1mM methamphetamine and 100nM ibudilast, Treatment 5: 1mM methamphetamine and 1uM ibudilast, Treatment 6: 1mM methamphetamine and 10uM ibudilast, and Treatment 7: 1mM methamphetamine and 100uM ibudilast. Finally, for inhibition of PKA, CREB, IP3 receptor, NMDA receptor, Sigma receptor antagonist, sigma receptor agonist, cells were preincubated with adding H89 dihydrochloride, 666-15, Heparin, Ketamine, BMY 14802, and Pentazocine. MTT and LDH tests were performed for cell viability and cytotoxicity measurement, respectively. In continuing, the caspase activity colorimetric assay kit used for caspase 3 activity diagnosis. Rhodamine-123 performed to detection of mitochondrial membrane potential. TUNEL test used to DNA fragmentation and apoptosis, Fura-2 used to Measurement of (Ca2+) ic and (Ca2+) m, and fluorescence microscope used to Measurement of antioxidant enzyme activities. Results: Ibudilast increased the cell viability and the rhodamine-123 absorbance in methamphetamin-treated PC12 cells. It reduced cell cytotoxicity, caspase 3 activity, ic and m Ca2+ concentration, (OH) generation and DNA fragmentation in all concentrations of 1 nM t0 100 µM (p<0.05) by the optimal concentration of 100 µM, between our tested treatments. Conclusion: Ibudilast as a phosphodiesterase inhibitor can reduce the methamphetamine-induced cell death due to inhibition of σ receptors through cAMP production.


Asunto(s)
Apoptosis/efectos de los fármacos , Metanfetamina/farmacología , Mitocondrias/patología , Piridinas/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Broncodilatadores/farmacología , Estimulantes del Sistema Nervioso Central/farmacología , Combinación de Medicamentos , Mitocondrias/efectos de los fármacos , Células PC12 , Ratas , Especies Reactivas de Oxígeno/metabolismo
4.
Eur J Pharm Sci ; 138: 105040, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31400388

RESUMEN

Antibiotics are effective drugs that are used to treat infectious diseases either by killing bacteria or slowing down their growth. The well-adapted structural features of antibiotics for the inhibition/activation of enzymes include several available hydrogen bond (H-bond) acceptors and donors, flexible backbone and hydrophobic nature. The substrates of α-amylase and α-glucosidase, known as key absorbing enzymes, have functional groups (OH groups) rembling antibiotics. Given the possibility of developing in diabetics and the significant association between diabetes and infection, the present study was conducted to investigate the influences of tetracycline (TET), kanamycin (KANA), lincomycin (LIN), erythromycin (ERM) and azithromycin (AZM) on α-glucosidase and α-amylase activities with calculating IC50 and Ki values. Also, the efficacy of antibiotics after oral administration was evaluated by analysis of blood glucose concentrations in rats, as well as a molecular docking analysis was explored. α-glucosidase and α-amylase activities were inhibited in a dose dependent fashion by TET with an IC50 of 38.7 ±â€¯1.4 and 47.8 ±â€¯3.2 µM respectively, by KANA with an IC50 of 46.2 ±â€¯1.6 and 65.1 ±â€¯1.6, by LIN with an IC50 of 59.1 ±â€¯2.1 and 51.3 ±â€¯4.1, by ERM with an IC50 of 94.9 ±â€¯4.7 and 65.7 ±â€¯3.8 and by AZM with an IC50 of 69.4 ±â€¯4.4 and 103.6 ±â€¯6.2. Moreover, the Ki values of TET were calculated as 4.4 ±â€¯0.6 and 8.4 ±â€¯0.8 µM for α-glucosidase and α-amylase in a competitive-mode and mixed-mode inhibition. In addition, to communicate with the active site of α-glucosidase and α-amylase respectively, TET presented a binding energy of -9.8 and -8.8 kcal/mol, KANA -7.9 and -7.1, LIN -7.8 and -6.7, ERM -6.8 and -6.4, and AZM -6.4 and -7.5 kcal/mol. In-vivo studies also suggested a decrease in the blood glucose concentration after administering TET compared to the positive controls (P < 0.01). The results obtained from the present research can therefore help the scientific community explore the possible interconnection between the clinical side-effects of antibiotics and their α-glucosidase and α-amylase inhibitory properties, as the target enzymes in hypoglycemia conditions.


Asunto(s)
Antibacterianos/farmacología , alfa-Amilasas/metabolismo , alfa-Glucosidasas/metabolismo , Animales , Glucemia/efectos de los fármacos , Diabetes Mellitus/metabolismo , Inhibidores Enzimáticos/uso terapéutico , Hipoglucemiantes/uso terapéutico , Masculino , Simulación del Acoplamiento Molecular , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA