Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
iScience ; 25(12): 105503, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36404924

RESUMEN

Advances in cellular engineering, as well as gene, and cell therapy, may be used to produce human tissues with programmable genetically enhanced functions designed to model and/or treat specific diseases. Fabrication of synthetic human liver tissue with these programmable functions has not been described. By generating human iPSCs with target gene expression controlled by a guide RNA-directed CRISPR-Cas9 synergistic-activation-mediator, we produced synthetic human liver tissues with programmable functions. Such iPSCs were guide-RNA-treated to enhance expression of the clinically relevant CYP3A4 and UGT1A1 genes, and after hepatocyte-directed differentiation, cells demonstrated enhanced functions compared to those found in primary human hepatocytes. We then generated human liver tissue with these synthetic human iPSC-derived hepatocytes (iHeps) and other non-parenchymal cells demonstrating advanced programmable functions. Fabrication of synthetic human liver tissue with modifiable functional genetic programs may be a useful tool for drug discovery, investigating biology, and potentially creating bioengineered organs with specialized functions.

2.
Sci Rep ; 11(1): 19833, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34615948

RESUMEN

Radiotherapy of head and neck squamous cell carcinoma can lead to long-term complications like osteoradionecrosis, resulting in severe impairment of the jawbone. Current standard procedures require a 6-month wait after irradiation before dental reconstruction can begin. A comprehensive characterization of the irradiation-induced molecular and functional changes in bone cells could allow the development of novel strategies for an earlier successful dental reconstruction in patients treated by radiotherapy. The impact of ionizing radiation on the bone-forming alveolar osteoblasts remains however elusive, as previous studies have relied on animal-based models and fetal or animal-derived cell lines. This study presents the first in vitro data obtained from primary human alveolar osteoblasts. Primary human alveolar osteoblasts were isolated from healthy donors and expanded. After X-ray irradiation with 2, 6 and 10 Gy, cells were cultivated under osteogenic conditions and analyzed regarding their proliferation, mineralization, and expression of marker genes and proteins. Proliferation of osteoblasts decreased in a dose-dependent manner. While cells recovered from irradiation with 2 Gy, application of 6 and 10 Gy doses not only led to a permanent impairment of proliferation, but also resulted in altered cell morphology and a disturbed structure of the extracellular matrix as demonstrated by immunostaining of collagen I and fibronectin. Following irradiation with any of the examined doses, a decrease of marker gene expression levels was observed for most of the investigated genes, revealing interindividual differences. Primary human alveolar osteoblasts presented a considerably changed phenotype after irradiation, depending on the dose administered. Mechanisms for these findings need to be further investigated. This could facilitate improved patient care by re-evaluating current standard procedures and investigating faster and safer reconstruction concepts, thus improving quality of life and social integrity.


Asunto(s)
Relación Dosis-Respuesta en la Radiación , Osteoblastos/efectos de la radiación , Biomarcadores , Calcificación Fisiológica/efectos de los fármacos , Diferenciación Celular/efectos de la radiación , Proliferación Celular/efectos de la radiación , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Humanos , Osteoblastos/citología , Osteoblastos/metabolismo , Proyectos Piloto , Biosíntesis de Proteínas , Radiación Ionizante
3.
Sci Rep ; 11(1): 4876, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33649412

RESUMEN

Jawbone differs from other bones in many aspects, including its developmental origin and the occurrence of jawbone-specific diseases like MRONJ (medication-related osteonecrosis of the jaw). Although there is a strong need, adequate in vitro models of this unique environment are sparse to date. While previous approaches are reliant e.g. on scaffolds or spheroid culture, 3D bioprinting enables free-form fabrication of complex living tissue structures. In the present work, production of human jawbone models was realised via projection-based stereolithography. Constructs were bioprinted containing primary jawbone-derived osteoblasts and vasculature-like channel structures optionally harbouring primary endothelial cells. After 28 days of cultivation in growth medium or osteogenic medium, expression of cell type-specific markers was confirmed on both the RNA and protein level, while prints maintained their overall structure. Survival of endothelial cells in the printed channels, co-cultured with osteoblasts in medium without supplementation of endothelial growth factors, was demonstrated. Constructs showed not only mineralisation, being one of the characteristics of osteoblasts, but also hinted at differentiation to an osteocyte phenotype. These results indicate the successful biofabrication of an in vitro model of the human jawbone, which presents key features of this special bone entity and hence appears promising for application in jawbone-specific research.


Asunto(s)
Bioimpresión , Células Endoteliales/metabolismo , Maxilares , Osteoblastos/metabolismo , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido/química , Técnicas de Cocultivo , Humanos
4.
Int J Mol Sci ; 22(2)2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33466904

RESUMEN

Reconstruction of segmental bone defects by autologous bone grafting is still the standard of care but presents challenges including anatomical availability and potential donor site morbidity. The process of 3D bioprinting, the application of 3D printing for direct fabrication of living tissue, opens new possibilities for highly personalized tissue implants, making it an appealing alternative to autologous bone grafts. One of the most crucial hurdles for the clinical application of 3D bioprinting is the choice of a suitable cell source, which should be minimally invasive, with high osteogenic potential, with fast, easy expansion. In this study, mesenchymal progenitor cells were isolated from clinically relevant human bone biopsy sites (explant cultures from alveolar bone, iliac crest and fibula; bone marrow aspirates; and periosteal bone shaving from the mastoid) and 3D bioprinted using projection-based stereolithography. Printed constructs were cultivated for 28 days and analyzed regarding their osteogenic potential by assessing viability, mineralization, and gene expression. While viability levels of all cell sources were comparable over the course of the cultivation, cells obtained by periosteal bone shaving showed higher mineralization of the print matrix, with gene expression data suggesting advanced osteogenic differentiation. These results indicate that periosteum-derived cells represent a highly promising cell source for translational bioprinting of bone tissue given their superior osteogenic potential as well as their minimally invasive obtainability.


Asunto(s)
Células de la Médula Ósea/metabolismo , Trasplante Óseo/métodos , Huesos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Biosíntesis de Proteínas , Ingeniería de Tejidos/métodos , Adulto , Bioimpresión/métodos , Células de la Médula Ósea/citología , Huesos/citología , Diferenciación Celular/genética , Células Cultivadas , Humanos , Células Madre Mesenquimatosas/citología , Osteogénesis/genética , Impresión Tridimensional , Andamios del Tejido , Trasplante Autólogo
5.
Sci Rep ; 10(1): 15606, 2020 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-32973223

RESUMEN

Barrier organ models need a scaffold structure to create a two compartment culture. Technical filter membranes used most often as scaffolds may impact cell behaviour and present a barrier themselves, ultimately limiting transferability of test results. In this work we present an alternative for technical filter membrane systems: a 3D bioprinted biological membrane in 24 well format. The biological membrane, based on extracellular matrix (ECM), is highly permeable and presents a natural 3D environment for cell culture. Inspired by the human placenta we established a coculture of a trophoblast-derived cell line (BeWo b30), together with primary placental fibroblasts within the biological membrane (simulating villous stroma) and primary human placental endothelial cells-representing three cellular components of the human placental villus. All cell types maintained their cell type specific marker expression after two weeks of coculture on the biological membrane. In permeability assays the trophoblast layer developed a barrier on the biological membrane, which was even more pronounced when cocultured with fibroblasts. In this work we present a filter membrane free scaffold, we characterize its properties and assess its suitability for cell culture and barrier models. Further we show a novel placenta inspired model in a complex bioprinted coculture. In the absence of an artificial filter membrane, we demonstrate barrier architecture and functionality.


Asunto(s)
Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Membrana Celular/metabolismo , Coriocarcinoma/patología , Vellosidades Coriónicas/patología , Imagenología Tridimensional/métodos , Trofoblastos/citología , Transporte Biológico , Supervivencia Celular , Células Cultivadas , Coriocarcinoma/metabolismo , Vellosidades Coriónicas/metabolismo , Femenino , Humanos , Embarazo , Trofoblastos/metabolismo , Neoplasias Uterinas/metabolismo , Neoplasias Uterinas/patología
6.
Acta Biomater ; 117: 121-132, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32980542

RESUMEN

Introduction of cavities and channels into 3D bioprinted constructs is a prerequisite for recreating physiological tissue architectures and integrating vasculature. Projection-based stereolithography inherently offers high printing speed with high spatial resolution, but so far has been incapable of fabricating complex native tissue architectures with cellular and biomaterial diversity. The use of sacrificial photoinks, i.e. photopolymerisable biomaterials that can be removed after printing, theoretically allows for the creation of any construct geometry via a multi-material printing process. However, the realisation of this strategy has been challenging because of difficult technical implementation and a lack of performant biomaterials. In this work, we use our projection-based, multi-material stereolithographic bioprinter and an enzymatically degradable sacrificial photoink to overcome the current hurdles. Multiple, hyaluronic acid-based photoinks were screened for printability, mechanical properties and digestibility through hyaluronidase. A formulation meeting all major requirements, i.e. desirable printing properties, generation of sufficiently strong hydrogels, as well as fast digestion rate, was identified. Biocompatibility of the material system was confirmed by embedding of human umbilical vein endothelial cells with followed enzymatic release. As a proof-of-concept, we bioprinted vascular models containing perfusable, endothelial cell-lined channels that remained stable for 28 days in culture. Our work establishes digestible sacrificial biomaterials as a new material strategy for 3D bioprinting of complex tissue models.


Asunto(s)
Bioimpresión , Humanos , Hidrogeles , Impresión Tridimensional , Estereolitografía , Ingeniería de Tejidos , Andamios del Tejido
7.
Sci Rep ; 9(1): 7057, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31065008

RESUMEN

Functional in vitro models emulating the physiological processes of human organ formation are invaluable for future research and the development of regenerative therapies. Here, a developmentally inspired approach is pursued to reproduce fundamental steps of human tooth organogenesis in vitro using human dental pulp cells. Similar to the in vivo situation of tooth initiating mesenchymal condensation, a 3D self-organizing culture was pursued resulting in an organoid of the size of a human tooth germ with odontogenic marker expression. Furthermore, the model is capable of epithelial invagination into the condensed mesenchyme, mimicking the reciprocal tissue interactions of human tooth development. Comprehensive transcriptome analysis revealed activation of well-studied as well as rather less investigated signaling pathways implicated in human tooth organogenesis, such as the Notch signaling. Early condensation in vitro revealed a shift to the TGFß signal transduction pathway and a decreased RhoA small GTPase activity, connected to the remodeling of the cytoskeleton and actin-mediated mechanotransduction. Therefore, this in vitro model of tooth development provides a valuable model to study basic human developmental mechanisms.


Asunto(s)
Pulpa Dental/citología , Técnicas de Cultivo de Tejidos/métodos , Diente/crecimiento & desarrollo , Adolescente , Adulto , Biomarcadores/metabolismo , Diferenciación Celular/genética , Pulpa Dental/metabolismo , Células Epiteliales , Expresión Génica , Perfilación de la Expresión Génica , Humanos , Odontogénesis/efectos de los fármacos , Odontogénesis/genética , Organoides , Transducción de Señal , Bibliotecas de Moléculas Pequeñas/farmacología , Diente/fisiología , Adulto Joven
8.
Genes (Basel) ; 9(4)2018 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-29565814

RESUMEN

Many tissue models have been developed to mimic liver-specific functions for metabolic and toxin conversion in in vitro assays. Most models represent a 2D environment rather than a complex 3D structure similar to native tissue. To overcome this issue, spheroid cultures have become the gold standard in tissue engineering. Unfortunately, spheroids are limited in size due to diffusion barriers in their dense structures, limiting nutrient and oxygen supply. Recent developments in bioprinting techniques have enabled us to engineer complex 3D structures with perfusion-enabled channel systems to ensure nutritional supply within larger, densely-populated tissue models. In this study, we present a proof-of-concept for the feasibility of bioprinting a liver organoid by combining HepaRG and human stellate cells in a stereolithographic printing approach, and show basic characterization under static cultivation conditions. Using standard tissue engineering analytics, such as immunohistology and qPCR, we found higher albumin and cytochrome P450 3A4 (CYP3A4) expression in bioprinted liver tissues compared to monolayer controls over a two-week cultivation period. In addition, the expression of tight junctions, liver-specific bile transporter multidrug resistance-associated protein 2 (MRP2), and overall metabolism (glucose, lactate, lactate dehydrogenase (LDH)) were found to be stable. Furthermore, we provide evidence for the perfusability of the organoids' intrinsic channel system. These results motivate new approaches and further development in liver tissue engineering for advanced organ-on-a-chip applications and pharmaceutical developments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA