Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EMBO Mol Med ; 12(6): e11248, 2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32352640

RESUMEN

Maladaptive plasticity involving increased expression of AMPA-type glutamate receptors is involved in several pathologies, including neuropathic pain, but direct inhibition of AMPARs is associated with side effects. As an alternative, we developed a cell-permeable, high-affinity (~2 nM) peptide inhibitor, Tat-P4 -(C5)2 , of the PDZ domain protein PICK1 to interfere with increased AMPAR expression. The affinity is obtained partly from the Tat peptide and partly from the bivalency of the PDZ motif, engaging PDZ domains from two separate PICK1 dimers to form a tetrameric complex. Bivalent Tat-P4 -(C5)2 disrupts PICK1 interaction with membrane proteins on supported cell membrane sheets and reduce the interaction of AMPARs with PICK1 and AMPA-receptor surface expression in vivo. Moreover, Tat-P4 -(C5)2 administration reduces spinal cord transmission and alleviates mechanical hyperalgesia in the spared nerve injury model of neuropathic pain. Taken together, our data reveal Tat-P4 -(C5)2 as a novel promising lead for neuropathic pain treatment and expand the therapeutic potential of bivalent inhibitors to non-tandem protein-protein interaction domains.


Asunto(s)
Neuralgia , Dominios PDZ , Proteínas Portadoras/metabolismo , Humanos , Neuralgia/tratamiento farmacológico , Proteínas Nucleares/metabolismo , Receptores AMPA/metabolismo
2.
Elife ; 82019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30605082

RESUMEN

PDZ domain scaffold proteins are molecular modules orchestrating cellular signalling in space and time. Here, we investigate assembly of PDZ scaffolds using supported cell membrane sheets, a unique experimental setup enabling direct access to the intracellular face of the cell membrane. Our data demonstrate how multivalent protein-protein and protein-lipid interactions provide critical avidity for the strong binding between the PDZ domain scaffold proteins, PICK1 and PSD-95, and their cognate transmembrane binding partners. The kinetics of the binding were remarkably slow and binding strength two-three orders of magnitude higher than the intrinsic affinity for the isolated PDZ interaction. Interestingly, discrete changes in the intrinsic PICK1 PDZ affinity did not affect overall binding strength but instead revealed dual scaffold modes for PICK1. Our data supported by simulations suggest that intrinsic PDZ domain affinities are finely tuned and encode specific cellular responses, enabling multiplexed cellular functions of PDZ scaffolds.


Asunto(s)
Membrana Celular/metabolismo , Proteínas del Citoesqueleto/metabolismo , Homólogo 4 de la Proteína Discs Large/metabolismo , Dominios PDZ , Sitio Alostérico , Secuencias de Aminoácidos , Animales , Sitios de Unión , Células HEK293 , Hipocampo/metabolismo , Humanos , Cinética , Ligandos , Mutación , Neuronas/metabolismo , Unión Proteica , Dominios Proteicos , Ratas , Proteínas Recombinantes/metabolismo , Transducción de Señal , Termodinámica
3.
Cell Rep ; 23(7): 2056-2069, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29768204

RESUMEN

BAR domains are dimeric protein modules that sense, induce, and stabilize lipid membrane curvature. Here, we show that membrane curvature sensing (MCS) directs cellular localization and function of the BAR domain protein PICK1. In PICK1, and the homologous proteins ICA69 and arfaptin2, we identify an amphipathic helix N-terminal to the BAR domain that mediates MCS. Mutational disruption of the helix in PICK1 impaired MCS without affecting membrane binding per se. In insulin-producing INS-1E cells, super-resolution microscopy revealed that disruption of the helix selectively compromised PICK1 density on insulin granules of high curvature during their maturation. This was accompanied by reduced hormone storage in the INS-1E cells. In Drosophila, disruption of the helix compromised growth regulation. By demonstrating size-dependent binding on insulin granules, our finding highlights the function of MCS for BAR domain proteins in a biological context distinct from their function, e.g., at the plasma membrane during endocytosis.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Gránulos Citoplasmáticos/metabolismo , Drosophila melanogaster/metabolismo , Insulina/metabolismo , Secreción de Insulina , Liposomas , Unión Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , Relación Estructura-Actividad
4.
Cell Rep ; 21(13): 3637-3645, 2017 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-29281813

RESUMEN

Synaptopathies contributing to neurodevelopmental disorders are linked to mutations in synaptic organizing molecules, including postsynaptic neuroligins, presynaptic neurexins, and MDGAs, which regulate their interaction. The role of MDGA1 in suppressing inhibitory versus excitatory synapses is controversial based on in vitro studies. We show that genetic deletion of MDGA1 in vivo elevates hippocampal CA1 inhibitory, but not excitatory, synapse density and transmission. Furthermore, MDGA1 is selectively expressed by pyramidal neurons and regulates perisomatic, but not distal dendritic, inhibitory synapses. Mdga1-/- hippocampal networks demonstrate muted responses to neural excitation, and Mdga1-/- mice are resistant to induced seizures. Mdga1-/- mice further demonstrate compromised hippocampal long-term potentiation, consistent with observed deficits in spatial and context-dependent learning and memory. These results suggest that mutations in MDGA1 may contribute to cognitive deficits through altered synaptic transmission and plasticity by loss of suppression of inhibitory synapse development in a subcellular domain- and cell-type-selective manner.


Asunto(s)
Cognición , Red Nerviosa/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Inhibición Neural , Sinapsis/metabolismo , Animales , Región CA1 Hipocampal/patología , Eliminación de Gen , Potenciación a Largo Plazo , Ratones Endogámicos C57BL , Ratones Noqueados , Moléculas de Adhesión de Célula Nerviosa/deficiencia , Sinapsis/ultraestructura , Transmisión Sináptica
5.
J Biol Chem ; 292(17): 6910-6926, 2017 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-28280242

RESUMEN

The class C G protein-coupled receptor GPRC6A is a putative nutrient-sensing receptor and represents a possible new drug target in metabolic disorders. However, the specific physiological role of this receptor has yet to be identified, and the mechanisms regulating its activity and cell surface availability also remain enigmatic. In the present study, we investigated the trafficking properties of GPRC6A by use of both a classical antibody feeding internalization assay in which cells were visualized using confocal microscopy and a novel internalization assay that is based on real-time measurements of fluorescence resonance energy transfer. Both assays revealed that GPRC6A predominantly undergoes constitutive internalization, whereas the agonist-induced effects were imperceptible. Moreover, postendocytic sorting was investigated by assessing the co-localization of internalized GPRC6A with selected Rab protein markers. Internalized GPRC6A was mainly co-localized with the early endosome marker Rab5 and the long loop recycling endosome marker Rab11 and to a much lesser extent with the late endosome marker Rab7. This suggests that upon agonist-independent internalization, GPRC6A is recycled via the Rab11-positive slow recycling pathway, which may be responsible for ensuring a persistent pool of GPRC6A receptors at the cell surface despite chronic agonist exposure. Distinct trafficking pathways have been reported for several of the class C receptors, and our results thus substantiate that non-canonical trafficking mechanisms are a common feature for the nutrient-sensing class C family that ensure functional receptors in the cell membrane despite prolonged agonist exposure.


Asunto(s)
Receptores Acoplados a Proteínas G/metabolismo , Animales , Membrana Celular/metabolismo , Endocitosis , Endosomas/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Humanos , Ratones , Microscopía Confocal , Transporte de Proteínas/fisiología , Ratas , Transferrina/química , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab5/metabolismo , Proteínas de Unión a GTP rab7
6.
Neuron ; 91(5): 1052-1068, 2016 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-27608760

RESUMEN

Mutations in a synaptic organizing pathway contribute to autism. Autism-associated mutations in MDGA2 (MAM domain containing glycosylphosphatidylinositol anchor 2) are thought to reduce excitatory/inhibitory transmission. However, we show that mutation of Mdga2 elevates excitatory transmission, and that MDGA2 blocks neuroligin-1 interaction with neurexins and suppresses excitatory synapse development. Mdga2(+/-) mice, modeling autism mutations, demonstrated increased asymmetric synapse density, mEPSC frequency and amplitude, and altered LTP, with no change in measures of inhibitory synapses. Behavioral assays revealed an autism-like phenotype including stereotypy, aberrant social interactions, and impaired memory. In vivo voltage-sensitive dye imaging, facilitating comparison with fMRI studies in autism, revealed widespread increases in cortical spontaneous activity and intracortical functional connectivity. These results suggest that mutations in MDGA2 contribute to altered cortical processing through the dual disadvantages of elevated excitation and hyperconnectivity, and indicate that perturbations of the NRXN-NLGN pathway in either direction from the norm increase risk for autism.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/fisiología , Corteza Cerebral/fisiología , Cognición/fisiología , Proteínas Ligadas a GPI/fisiología , Haploinsuficiencia/fisiología , Moléculas de Adhesión de Célula Nerviosa/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Animales , Moléculas de Adhesión Celular Neuronal/metabolismo , Células Cultivadas , Corteza Cerebral/metabolismo , Homólogo 4 de la Proteína Discs Large , Potenciales Postsinápticos Excitadores/fisiología , Proteínas Ligadas a GPI/biosíntesis , Proteínas Ligadas a GPI/genética , Guanilato-Quinasas/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiología , Potenciación a Largo Plazo/fisiología , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/fisiología , Moléculas de Adhesión de Célula Nerviosa/biosíntesis , Moléculas de Adhesión de Célula Nerviosa/genética , Receptores AMPA/metabolismo , Receptores AMPA/fisiología , Sinapsis/metabolismo
7.
Neurochem Int ; 98: 103-14, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27020406

RESUMEN

The high affinity transporters for the monoamine neurotransmitters, dopamine, norepinephrine, and serotonin, play a key role in controlling monoaminergic neurotransmission. It is believed that the transporters (DAT, NET and SERT, respectively) are subject to tight regulation by the cellular signaling machinery to maintain monoaminergic homeostasis. Kinases constitute a pivotal role in cellular signaling, however, the regulation of monoamine transporters by the entire ensemble of kinases is unknown. Here, we perform a whole human kinome RNA interference screen to identify novel kinases involved in regulation of monoamine transporter function and surface expression. A primary screen in HEK 293 cells stably expressing DAT or SERT with siRNAs against 573 human kinases revealed 93 kinases putatively regulating transporter function. All 93 hits, which also included kinases previously implicated in monoamine transporter regulation, such as Protein kinase B (Akt) and mitogen-activated protein kinases (MAPK), were validated with a new set of siRNAs in a secondary screen. In this screen we assessed both changes in uptake and surface expression leading to selection of 11 kinases for further evaluation in HEK 293 cells transiently expressing DAT, SERT or NET. Subsequently, three kinases; salt inducible kinase 3 (SIK3), cAMP-dependent protein kinase catalytic subunit alpha (PKA C-α) and protein kinase X-linked (PrKX); were selected for additional exploration in catecholaminergic CATH.a differentiated cells (CAD) and rat chromocytoma (PC12) cells. Whereas SIK3 likely transcriptionally regulated expression of the three transfected transporters, depletion of PKA C-α was shown to decrease SERT function. Depletion of PrKX caused decreased surface expression and function of DAT without changing protein levels, suggesting that PrKX stabilizes the transporter at the cell surface. Summarized, our data provide novel insight into kinome regulation of the monoamine transporters and identifies PrKX as a yet unappreciated possible regulator of monoamine transporter function.


Asunto(s)
Proteínas Quinasas/genética , Proteínas de Transporte Vesicular de Monoaminas/fisiología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/fisiología , Células HEK293 , Ensayos Analíticos de Alto Rendimiento , Humanos , Neurotransmisores/metabolismo , Proteína Quinasa C-alfa/genética , Proteína Quinasa C-alfa/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Proteínas de Transporte Vesicular de Monoaminas/genética , Proteínas de Transporte Vesicular de Monoaminas/metabolismo
8.
J Neurosci ; 35(36): 12425-31, 2015 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-26354911

RESUMEN

Neurotrophin-3 (NT-3) and its high-affinity receptor TrkC play crucial trophic roles in neuronal differentiation, axon outgrowth, and synapse development and plasticity in the nervous system. We demonstrated previously that postsynaptic TrkC functions as a glutamatergic synapse-inducing (synaptogenic) cell adhesion molecule trans-interacting with presynaptic protein tyrosine phosphatase σ (PTPσ). Given that NT-3 and PTPσ bind distinct domains of the TrkC extracellular region, here we tested the hypothesis that NT-3 modulates TrkC/PTPσ binding and synaptogenic activity. NT-3 enhanced PTPσ binding to cell surface-expressed TrkC and facilitated the presynapse-inducing activity of TrkC in rat hippocampal neurons. Imaging of recycling presynaptic vesicles combined with TrkC knockdown and rescue approaches demonstrated that NT-3 rapidly potentiates presynaptic function via binding endogenous postsynaptic TrkC in a tyrosine kinase-independent manner. Thus, NT-3 positively modulates the TrkC-PTPσ complex for glutamatergic presynaptic assembly and function independently from TrkC kinase activation. Our findings provide new insight into synaptic roles of neurotrophin signaling and mechanisms controlling synaptic organizing complexes. Significance statement: Although many synaptogenic adhesion complexes have been identified in recent years, little is known about modulatory mechanisms. Here, we demonstrate a novel role of neurotrophin-3 in synaptic assembly and function as a positive modulator of the TrkC-protein tyrosine phosphatase σ complex. This study provides new insight into the involvement of neurotrophin signaling in synapse development and plasticity, presenting a molecular mechanism that may underlie previous observations of short- and long-term enhancement of presynaptic function by neurotrophin. Given the links of synaptogenic adhesion molecules to autism and schizophrenia, this study might also contribute to a better understanding of the pathogenesis of these disorders and provide a new direction for ameliorating imbalances in synaptic signaling networks.


Asunto(s)
Hipocampo/metabolismo , Neuronas/metabolismo , Neurotrofina 3/metabolismo , Receptor trkC/metabolismo , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo , Sinapsis/metabolismo , Animales , Células COS , Células Cultivadas , Chlorocebus aethiops , Femenino , Hipocampo/citología , Masculino , Neuronas/fisiología , Unión Proteica , Ratas , Receptor trkC/genética , Sinapsis/fisiología
9.
Structure ; 23(7): 1258-1270, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26073603

RESUMEN

PICK1 is a neuronal scaffolding protein containing a PDZ domain and an auto-inhibited BAR domain. BAR domains are membrane-sculpting protein modules generating membrane curvature and promoting membrane fission. Previous data suggest that BAR domains are organized in lattice-like arrangements when stabilizing membranes but little is known about structural organization of BAR domains in solution. Through a small-angle X-ray scattering (SAXS) analysis, we determine the structure of dimeric and tetrameric complexes of PICK1 in solution. SAXS and biochemical data reveal a strong propensity of PICK1 to form higher-order structures, and SAXS analysis suggests an offset, parallel mode of BAR-BAR oligomerization. Furthermore, unlike accessory domains in other BAR domain proteins, the positioning of the PDZ domains is flexible, enabling PICK1 to perform long-range, dynamic scaffolding of membrane-associated proteins. Together with functional data, these structural findings are compatible with a model in which oligomerization governs auto-inhibition of BAR domain function.


Asunto(s)
Proteínas Portadoras/química , Proteínas Nucleares/química , Animales , Células COS , Calcio/química , Chlorocebus aethiops , Humanos , Simulación de Dinámica Molecular , Unión Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Dispersión del Ángulo Pequeño , Soluciones , Difracción de Rayos X
10.
Nat Commun ; 4: 1580, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23481388

RESUMEN

The dopamine transporter mediates reuptake of dopamine from the synaptic cleft. The cellular mechanisms controlling dopamine transporter levels in striatal nerve terminals remain poorly understood. The dopamine transporters contain a C-terminal PDZ (PSD-95/Discs-large/ZO-1) domain-binding sequence believed to bind synaptic scaffolding proteins, but its functional significance is uncertain. Here we demonstrate that two different dopamine transporter knock-in mice with disrupted PDZ-binding motifs (dopamine transporter-AAA and dopamine transporter+Ala) are characterized by dramatic loss of dopamine transporter expression in the striatum, causing hyperlocomotion and attenuated response to amphetamine. In cultured dopaminergic neurons and striatal slices from dopamine transporter-AAA mice, we find markedly reduced dopamine transporter surface levels and evidence for enhanced constitutive internalization. In dopamine transporter-AAA neurons, but not in wild-type neurons, surface levels are rescued in part by expression of a dominant-negative dynamin mutation (K44A). Our findings suggest that PDZ-domain interactions are critical for synaptic distribution of dopamine transporter in vivo and thereby for proper maintenance of dopamine homoeostasis.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/química , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Neostriado/metabolismo , Dominios PDZ , Secuencia de Aminoácidos , Anfetamina/farmacología , Animales , Conducta Animal/efectos de los fármacos , Sitios de Unión , Transporte Biológico/efectos de los fármacos , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular , Dopamina/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Endocitosis/efectos de los fármacos , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Inmunohistoquímica , Locomoción/efectos de los fármacos , Ratones , Ratones Noqueados , Mutación/genética , Neostriado/efectos de los fármacos , Proteínas Nucleares/metabolismo , Fenotipo , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/metabolismo , Unión Proteica/efectos de los fármacos , Relación Estructura-Actividad
11.
Biochemistry ; 51(2): 586-96, 2012 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-22129425

RESUMEN

PICK1 (protein interacting with C kinase 1) contains an N-terminal protein binding PDZ domain and a C-terminal lipid binding BAR domain. PICK1 plays a key role in several physiological processes, including synaptic plasticity. However, little is known about the cellular mechanisms governing the activity of PICK1 itself. Here we show that PICK1 is a substrate in vitro both for PKCα (protein kinase Cα), as previously shown, and for CaMKIIα (Ca(2+)-calmodulin-dependent protein kinase IIα). By mutation of predicted phosphorylation sites, we identify Ser77 in the PDZ domain as a major phosphorylation site for PKCα. Mutation of Ser77 reduced the level of PKCα-mediated phosphorylation ~50%, whereas no reduction was observed upon mutation of seven other predicted sites. Addition of lipid vesicles increased the level of phosphorylation of Ser77 10-fold, indicating that lipid binding is critical for optimal phosphorylation. Binding of PKCα to the PICK1 PDZ domain was not required for phosphorylation, but a PDZ domain peptide ligand reduced the overall level of phosphorylation ~30%. The phosphomimic S77D reduced the extent of cytosolic clustering of eYFP-PICK1 in COS7 cells and thereby conceivably its lipid binding and/or polymerization capacity. We propose that PICK1 is phosphorylated at Ser77 by PKCα preferentially when bound to membrane vesicles and that this phosphorylation in turn modulates its cellular distribution.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Metabolismo de los Lípidos , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Dominios PDZ , Proteína Quinasa C-alfa/metabolismo , Serina , Sustitución de Aminoácidos , Animales , Sitios de Unión , Células COS , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteínas Portadoras/genética , Chlorocebus aethiops , Proteínas del Citoesqueleto , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Proteínas Nucleares/genética , Fosforilación , Transporte de Proteínas
12.
Traffic ; 9(8): 1327-43, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18466293

RESUMEN

The PSD-95/Discs-large/ZO-1 homology (PDZ) domain protein, protein interacting with C kinase 1 (PICK1) contains a C-terminal Bin/amphiphysin/Rvs (BAR) domain mediating recognition of curved membranes; however, the molecular mechanisms controlling the activity of this domain are poorly understood. In agreement with negative regulation of the BAR domain by the N-terminal PDZ domain, PICK1 distributed evenly in the cytoplasm, whereas truncation of the PDZ domain caused BAR domain-dependent redistribution to clusters colocalizing with markers of recycling endosomal compartments. A similar clustering was observed both upon truncation of a short putative alpha-helical segment in the linker between the PDZ and the BAR domains and upon coexpression of PICK1 with a transmembrane PDZ ligand, including the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor GluR2 subunit, the GluR2 C-terminus transferred to the single transmembrane protein Tac or the dopamine transporter C-terminus transferred to Tac. In contrast, transfer of the GluR2 C-terminus to cyan fluorescent protein, a cytosolic protein, did not elicit BAR domain-dependent clustering. Instead, localizing PICK1 to the membrane by introducing an N-terminal myristoylation site produced BAR domain-dependent, but ligand-independent, PICK1 clustering. The data support that in the absence of PDZ ligand, the PICK1 BAR domain is inhibited through a PDZ domain-dependent and linker-dependent mechanism. Moreover, they suggest that unmasking of the BAR domain's membrane-binding capacity is not a consequence of ligand binding to the PDZ domain per se but results from, and coincides with, recruitment of PICK1 to a membrane compartment.


Asunto(s)
Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Regulación de la Expresión Génica , Proteínas Nucleares/metabolismo , Animales , Transporte Biológico , Células COS , Chlorocebus aethiops , Proteínas del Citoesqueleto , Hipocampo/metabolismo , Ligandos , Lípidos/química , Modelos Biológicos , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Ratas
13.
Am J Physiol Regul Integr Comp Physiol ; 290(6): R1683-90, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16439672

RESUMEN

In this study, primary cultures of trout skeletal muscle cells were used to investigate the main signal transduction pathways of insulin and IGF-I receptors in rainbow trout muscle. At different stages of in vitro development (myoblasts on day 1, myocytes on day 4, and fully developed myotubes on day 11), we detected in these cells the presence of immunoreactivity against ERK 1/2 MAPK and Akt/PKB proteins, components of the MAPK and the phosphatidylinositol 3-kinase-Akt pathways, respectively, two of the main intracellular transduction pathways for insulin and IGF-I receptors. Both insulin and IGF-I activated both pathways, although the latter provoked higher immunoreactivity of phosphorylated MAPKs and Akt proteins. At every stage, increases in total MAPK immunoreactivity levels were observed when cells were stimulated with IGF-I or insulin, while total Akt immunoreactivity levels changed little under stimulation of peptides. Total Akt and total MAPK levels increased as skeletal muscle cells differentiated in culture. Moreover, when cells were incubated with IGF-I or insulin, MAPK-P immunoreactivity levels showed greater increases over the basal levels on days 1 and 4, with no effect observed on day 11. Although Akt-P immunoreactivity displayed improved responses on days 1 and 4 as well, a stimulatory effect was still observed on day 11. In addition, the present study demonstrates that purified trout insulin receptors possess higher phosphorylative activity per unit of receptor than IGF-I receptors. In conclusion, these results indicate that trout skeletal muscle culture is a suitable model to study the insulin and IGF-I signal transduction molecules and that there is a different regulation of MAPK and Akt pathways depending on the developmental stage of the muscle cells.


Asunto(s)
Fibras Musculares Esqueléticas/fisiología , Oncorhynchus mykiss/fisiología , Receptor IGF Tipo 1/fisiología , Receptor de Insulina/fisiología , Transducción de Señal/fisiología , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Flavonoides/farmacología , Insulina/metabolismo , Insulina/farmacología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/efectos de los fármacos , Mioblastos/citología , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación/efectos de los fármacos , Unión Proteica , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA