Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Brain Commun ; 6(3): fcae132, 2024.
Article En | MEDLINE | ID: mdl-38707707

Neurofilament light chain is an established marker of neuroaxonal injury that is elevated in CSF and blood across various neurological diseases. It is increasingly used in clinical practice to aid diagnosis and monitor progression and as an outcome measure to assess safety and efficacy of disease-modifying therapies across the clinical translational neuroscience field. Quantitative methods for neurofilament light chain in human biofluids have relied on immunoassays, which have limited capacity to describe the structure of the protein in CSF and how this might vary in different neurodegenerative diseases. In this study, we characterized and quantified neurofilament light chain species in CSF across neurodegenerative and neuroinflammatory diseases and healthy controls using targeted mass spectrometry. We show that the quantitative immunoprecipitation-tandem mass spectrometry method developed in this study strongly correlates to single-molecule array measurements in CSF across the broad spectrum of neurodegenerative diseases and was replicable across mass spectrometry methods and centres. In summary, we have created an accurate and cost-effective assay for measuring a key biomarker in translational neuroscience research and clinical practice, which can be easily multiplexed and translated into clinical laboratories for the screening and monitoring of neurodegenerative disease or acute brain injury.

2.
Mult Scler Relat Disord ; 57: 103409, 2022 Jan.
Article En | MEDLINE | ID: mdl-34871856

BACKGROUND: In multiple sclerosis (MS) neurofilament light chain (NfL) is a marker of neuronal damage secondary to inflammation and neurodegeneration. NfL levels drop after commencement of disease-modifying treatment, especially the highly active ones. However, the factors that influence this drop are unknown. OBJECTIVE: To examine the patient and treatment-related factors that influence CSF NfL before and after starting treatment. METHODS: Eligible patients across two centres with two CSF NfL measurements, clinical and MRI data were included as part of an observational cohort study. RESULTS: Data were available in 61 patients, of which 40 were untreated at the first CSF sampling (T1) and treated at the second (T2; mean T1-T2: 19 months). CSF NfL reduction correlated with age (beta = 1.24 95%CI(1.07,1.43); R2 = 0.17; p = 0.005), Expanded Disability Status Scale (EDSS) (beta = 1.12 95%CI(1.00,1.25); R2 = 0.21; p = 0.05) and the type of MS (beta = 0.63 95%CI(0.43, 0.92); R2 = 0.12; p = 0.018; reference=relapsing MS). The treatment effect on a baseline NfL of 702 pg/mL was 451 pg/ml 95%CI(374,509) in a 30-year-old versus 228 pg/ml 95%CI(63,350) in a 60-year-old. There was no association in CSF NfL reduction with BMI, disease duration or sex. In cladribine- and alemtuzumab-treated patients, the CSF NfL T2/T1 ratio did not correlate with lymphocyte depletion rate at 23 weeks. CONCLUSIONS: In this observational study, we found that factors reflecting early disease stage, including a younger age, lower disability and relapsing MS were associated with treatment response in CSF NfL. Other factors were not found to be related, including lymphopaenia in highly-active treatments.


Multiple Sclerosis , Adult , Biomarkers , Cohort Studies , Humans , Magnetic Resonance Imaging , Middle Aged , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/drug therapy , Neurons
3.
Article En | MEDLINE | ID: mdl-32826298

OBJECTIVE: To evaluate the use of CSF neurofilament light chain (NfL) measurements in clinical practice as well as their effect on treatment strategies and outcomes in patients with MS. METHODS: This was an observational cohort study of patients with MS who had a CSF NfL measurement between December 2015 and July 2018 as part of their routine clinical care. Treatment strategies were classified as "No Treatment/No Escalation" (no treatment or no escalation of treatment) or "Treatment/Escalation" (first-line injectable/oral disease-modifying therapies (DMTs), highly active DMTs, or treatment escalation). Change in Expanded Disability Status Scale (EDSS) scores was evaluated after 1-year follow-up. RESULTS: Of 203 patients with MS, 117 (58%) had relapsing-remitting MS. Disease activity was most frequently indicated by elevated CSF NfL (n = 85), followed by clinical (n = 81) and MRI activity (n = 65). CSF NfL measurements were independently associated with clinical (p = 0.02) and MRI activity (p < 0.001). Of those with elevated CSF NfL as the only evidence of disease activity (n = 22), 77% had progressive MS (PMS). In patients with PMS, 17 (20%) had elevated CSF NfL as the sole indicator of disease activity. Elevated CSF NfL resulted more frequently in Treatment/Escalation than normal CSF NfL (p < 0.001). Median EDSS change at follow-up was similar between patients receiving No Treatment/No Escalation and Treatment/Escalation decisions (p = 0.81). CONCLUSIONS: CSF NfL measurements informed treatment strategies, alongside clinical and MRI measures. CSF NfL levels were the only indicator of disease activity in a subset of patients, which was more pronounced in patients with PMS. Elevated CSF NfL was associated with more Treatment/Escalation strategies, which had an impact on EDSS outcomes at 1 year.


Immunologic Factors/administration & dosage , Multiple Sclerosis, Chronic Progressive/cerebrospinal fluid , Multiple Sclerosis, Chronic Progressive/drug therapy , Multiple Sclerosis, Relapsing-Remitting/cerebrospinal fluid , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Neurofilament Proteins/cerebrospinal fluid , Adult , Disease Progression , Female , Follow-Up Studies , Humans , Male , Middle Aged , Multiple Sclerosis, Chronic Progressive/pathology , Multiple Sclerosis, Chronic Progressive/physiopathology , Multiple Sclerosis, Relapsing-Remitting/pathology , Multiple Sclerosis, Relapsing-Remitting/physiopathology , Outcome Assessment, Health Care
4.
J Neurol Neurosurg Psychiatry ; 89(12): 1266-1271, 2018 12.
Article En | MEDLINE | ID: mdl-29991490

OBJECTIVES: The aims of this manuscript were to review the evidence for the efficacy and safety of cladribine in multiple sclerosis (MS) and to review the molecular and cellular mechanisms by which cladribine acts as a disease-modifying therapy in MS. METHODS: This is a narrative review of the available clinical and preclinical data on the use of cladribine in MS. RESULTS: Clinical trial data argue strongly that cladribine is a safe and effective therapy for relapsing MS and that it may also be beneficial in progressive MS. The pharmacology of cladribine explains how it is selectively toxic towards lymphocytes. Immunophenotyping studies show that cladribine depletes lymphocyte populations in vivo with a predilection for B cells. In vitro studies demonstrate that cladribine also exerts immunomodulatory influences over innate and adaptive immunity. CONCLUSIONS: Cladribine is a safe and effective form of induction therapy for relapsing MS. Its mechanism of benefit is not fully understood but the most striking action is selective, long-lasting, depletion of B lymphocytes with a particular predilection for memory B cells. The in vivo relevance of its other immunomodulatory actions is unknown. The hypothesis that cladribine's action of benefit is to deplete memory B cells is important: if correct, it implies that selective targeting of this cell population and sparing of other lymphocytes could modify disease activity without predisposing to immunosuppression-related complications.


Cladribine/pharmacology , Cladribine/therapeutic use , Immunomodulation/drug effects , Multiple Sclerosis/drug therapy , Animals , Cladribine/adverse effects , Humans , Immunosuppressive Agents/adverse effects , Immunosuppressive Agents/pharmacology , Immunosuppressive Agents/therapeutic use , Lymphocyte Subsets/drug effects
5.
J Neurol ; 265(5): 1199-1209, 2018 May.
Article En | MEDLINE | ID: mdl-29550884

BACKGROUND: The mechanism of action of oral cladribine, recently licensed for relapsing multiple sclerosis, is unknown. OBJECTIVE: To determine whether cladribine depletes memory B cells consistent with our recent hypothesis that effective, disease-modifying treatments act by physical/functional depletion of memory B cells. METHODS: A cross-sectional study examined 40 people with multiple sclerosis at the end of the first cycle of alemtuzumab or injectable cladribine. The relative proportions and absolute numbers of peripheral blood B lymphocyte subsets were measured using flow cytometry. Cell-subtype expression of genes involved in cladribine metabolism was examined from data in public repositories. RESULTS: Cladribine markedly depleted class-switched and unswitched memory B cells to levels comparable with alemtuzumab, but without the associated initial lymphopenia. CD3+ T cell depletion was modest. The mRNA expression of metabolism genes varied between lymphocyte subsets. A high ratio of deoxycytidine kinase to group I cytosolic 5' nucleotidase expression was present in B cells and was particularly high in mature, memory and notably germinal centre B cells, but not plasma cells. CONCLUSIONS: Selective B cell cytotoxicity coupled with slow repopulation kinetics results in long-term, memory B cell depletion by cladribine. These may offer a new target, possibly with potential biomarker activity, for future drug development.


B-Lymphocyte Subsets/drug effects , Cladribine/adverse effects , Immunologic Factors/adverse effects , Multiple Sclerosis/blood , Multiple Sclerosis/drug therapy , Administration, Oral , Adult , Alemtuzumab/adverse effects , Alemtuzumab/therapeutic use , Apoptosis/drug effects , B-Lymphocyte Subsets/metabolism , Cladribine/therapeutic use , Cross-Sectional Studies , Deoxycytidine Kinase/metabolism , Dose-Response Relationship, Drug , Female , Humans , Immunologic Factors/therapeutic use , Lymph Nodes/drug effects , Lymph Nodes/metabolism , Lymph Nodes/pathology , Lymphopenia/blood , Lymphopenia/etiology , Male , Multiple Sclerosis/pathology , RNA, Messenger/metabolism , Treatment Outcome
6.
Gastroenterology ; 149(2): 456-67.e15, 2015 Aug.
Article En | MEDLINE | ID: mdl-25917784

BACKGROUND & AIMS: Innate lymphoid cells (ILCs) are a heterogeneous group of mucosal inflammatory cells that participate in chronic intestinal inflammation. We investigated the role of interleukin 6 (IL6) in inducing activation of ILCs in mice and in human beings with chronic intestinal inflammation. METHODS: ILCs were isolated from colons of Tbx21(-/-) × Rag2(-/-) mice (TRUC), which develop colitis; patients with inflammatory bowel disease (IBD); and patients without colon inflammation (controls). ILCs were characterized by flow cytometry; cytokine production was measured by enzyme-linked immunosorbent assay and cytokine bead arrays. Mice were given intraperitoneal injections of depleting (CD4, CD90), neutralizing (IL6), or control antibodies. Isolated colon tissues were analyzed by histology, explant organ culture, and cell culture. Bacterial DNA was extracted from mouse fecal samples to assess the intestinal microbiota. RESULTS: IL17A- and IL22-producing, natural cytotoxicity receptor-negative, ILC3 were the major subset of ILCs detected in colons of TRUC mice. Combinations of IL23 and IL1α induced production of cytokines by these cells, which increased further after administration of IL6. Antibodies against IL6 reduced colitis in TRUC mice without significantly affecting the structure of their intestinal microbiota. Addition of IL6 increased production of IL17A, IL22, and interferon-γ by human intestinal CD3-negative, IL7-receptor-positive cells, in a dose-dependent manner. CONCLUSIONS: IL6 contributes to activation of colonic natural cytotoxicity receptor-negative, CD4-negative, ILC3s in mice with chronic intestinal inflammation (TRUC mice) by increasing IL23- and IL1α-induced production of IL17A and IL22. This pathway might be targeted to treat patients with IBD because IL6, which is highly produced in colonic tissue by some IBD patients, also increased the production of IL17A, IL22, and interferon-γ by cultured human colon CD3-negative, IL7-receptor-positive cells.


CD4 Antigens/metabolism , Cytokines/metabolism , Immunity, Innate/drug effects , Inflammatory Bowel Diseases/immunology , Interleukin-6/pharmacology , Lymphocytes/drug effects , Animals , CD3 Complex/metabolism , Cell Culture Techniques , Colon/cytology , Colon/immunology , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Humans , Inflammatory Bowel Diseases/drug therapy , Interferon-gamma/metabolism , Interleukin-17/metabolism , Interleukin-1alpha/metabolism , Interleukin-23/metabolism , Interleukin-6/administration & dosage , Interleukins/metabolism , Lymphocytes/immunology , Mice , Mice, Knockout , Receptors, Natural Cytotoxicity Triggering/metabolism , Interleukin-22
7.
Eur J Immunol ; 44(2): 370-85, 2014 Feb.
Article En | MEDLINE | ID: mdl-24338958

IL-13 has been implicated in the pathogenesis of ulcerative colitis (UC), and may have a role in animal models of gut fibrosis. We studied the involvement of IL-13 in inflammation and fibrosis in UC and Crohn's disease (CD). Intestinal biopsies and anti-CD3/CD28- or anti-CD2/CD28-stimulated lamina propria mononuclear cells from UC and CD patients and control subjects were cultured, and IL-13, IL-4, IL-5, IL-17A and IFN-γ production was measured. Mucosal IL-13-producing cells were characterised by flow cytometry. Gut explants from strictured CD, non-strictured CD and healthy donors were cultured ex vivo, and secreted IL-13, IL-1ß and collagen were measured. IL-13 production by mucosal explants and activated lamina propria mononuclear cells did not differ between CD, UC and control subjects, and was at least a log lower than IFN-γ and IL-17A. IL-13-producing cells, and in particular natural killer T cells, were uniformly low in all groups. IL-4 and IL-5 were undetectable in culture supernatants. Explants of CD strictures produced low amounts of IL-13, whereas IL-1ß and collagen were elevated. We could not confirm that UC or strictured CD are associated with elevated IL-13 production. These data suggest that an anti-IL-13 Ab would not be an appropriate therapeutic strategy in inflammatory bowel disease.


Colitis, Ulcerative/immunology , Crohn Disease/immunology , Fibrosis/immunology , Inflammation/immunology , Inflammatory Bowel Diseases/immunology , Interleukin-13/immunology , Adolescent , Adult , Aged , CD28 Antigens/immunology , CD3 Complex/immunology , Colitis, Ulcerative/pathology , Crohn Disease/pathology , Fibrosis/pathology , Humans , Inflammation/pathology , Inflammatory Bowel Diseases/pathology , Interferon-gamma/immunology , Interleukin-13 Receptor alpha1 Subunit/immunology , Interleukin-13 Receptor alpha2 Subunit/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Intestines/immunology , Intestines/pathology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/pathology , Macrophages/immunology , Macrophages/pathology , Middle Aged , Mucous Membrane/immunology , Mucous Membrane/pathology , Natural Killer T-Cells/immunology , Th2 Cells/immunology , Transforming Growth Factor beta1/immunology , Young Adult
8.
Fibrogenesis Tissue Repair ; 6(1): 13, 2013 Jul 08.
Article En | MEDLINE | ID: mdl-23834907

BACKGROUND: Interleukin (IL)-17A and IL-17E (also known as IL-25) have been implicated in fibrosis in various tissues. However, the role of these cytokines in the development of intestinal strictures in Crohn's disease (CD) has not been explored. We investigated the levels of IL-17A and IL-17E and their receptors in CD strictured and non-strictured gut, and the effects of IL-17A and IL-17E on CD myofibroblasts. RESULTS: IL-17A was significantly overexpressed in strictured compared with non-strictured CD tissues, whereas no significant difference was found in the expression of IL-17E or IL-17A and IL-17E receptors (IL-17RC and IL-17RB, respectively) in strictured and non-strictured CD areas. Strictured CD explants released significantly higher amounts of IL-17A than non-strictured explants, whereas no difference was found as for IL-17E, IL-6, or tumor necrosis factor-α production. IL-17A, but not IL-17E, significantly inhibited myofibroblast migration, and also significantly upregulated matrix metalloproteinase (MMP)-3, MMP-12, tissue inhibitor of metalloproteinase-1 and collagen production by myofibroblasts from strictured CD tissues. CONCLUSIONS: Our results suggest that IL-17A, but not IL-17E, is pro-fibrotic in CD. Further studies are needed to clarify whether the therapeutic blockade of IL-17A through the anti-IL-17A monoclonal antibody secukinumab is able to counteract the fibrogenic process in CD.

9.
Free Radic Biol Med ; 53(11): 2102-11, 2012 Dec 01.
Article En | MEDLINE | ID: mdl-23044262

Gut dysmotility develops in individuals during and after recovering from infective acute gastroenteritis and it is apparently due to a direct effect of circulating lipopolysaccharides (LPS). This is an endotoxin with a prooxidant activity derived from gram-negative bacteria. Due to the lack of human models available so far, the mechanisms underlying LPS-induced gut dysmotility are, however, poorly investigated. In the present work long-term effects of LPS and their reversibility have been assessed by means of different analytical cytology methods on pure primary cultures of human colonic smooth muscle cells. We found that LPS triggered the following alterations: (i) a redox imbalance with profound changes of contractile microfilament network, and (ii) the induction of cell cycle progression with dedifferentiation from a contractile to a synthetic phenotype. These alterations persisted also after LPS removal. Importantly, two unrelated antioxidants, alpha-tocopherol and N-acetylcysteine, were able to reverse the cytopathic effects of LPS and to restore normal muscle cell function. The present data indicate that LPS is capable of triggering a persistent and long-term response that could contribute to muscle dysfunction occurring after an infective and related inflammatory burst and suggest a reappraisal of antioxidants in the management of postinfective motor disorders of the gut.


Acetylcysteine/pharmacology , Antioxidants/pharmacology , Colon/cytology , Myocytes, Smooth Muscle/drug effects , alpha-Tocopherol/pharmacology , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/metabolism , Adult , Aged , Aged, 80 and over , Cell Cycle/drug effects , Cell Shape/drug effects , Cells, Cultured , Female , Fluoresceins , Humans , Interleukin-10/metabolism , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , Male , Middle Aged , Muscle Contraction/drug effects , Myocytes, Smooth Muscle/immunology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/physiology , NF-kappa B/metabolism , Ouabain/analogs & derivatives
10.
J Clin Gastroenterol ; 46 Suppl: S6-11, 2012 Oct.
Article En | MEDLINE | ID: mdl-22955360

AIM: To test the activities of culture-extracted or commercially available toll-like receptors (TLRs) ligands to establish their direct impact on target gastrointestinal motor cells. METHODS: Short-term and long-term effects of Shigella flexneri M90T and Escherichia coli K-2 strains-extracted lipopolysaccharides (LPS), commercially highly purified LPS (E. coli O111:B4 and EH100), and Pam2CSK4 and Pam3CSK4, which bind TLR2/6 and TLR1/2 heterodimers, respectively, have been assessed on pure primary cultures of colonic human smooth muscle cells (HSMC). RESULTS: Pathogenic Shigella-LPS and nonpathogenic E. coli K-2-LPS induced a time-dependent decrease of resting cell length and acetylcholine-induced contraction, with both alterations occurring rapidly and being more pronounced in response to the former. However, their effects differed, prolonging HSMC exposure with Shigella-LPS effects maintained throughout the 4 hours of observation compared with E. coli K-2-LPS, which disappeared after 60 minutes of incubation. Similar differences in magnitude and time dependency of myogenic effects were observed between pure TLR4 and TLR2/1 or TLR2/6 ligands. The specific activation of TLR4 with LPS from pathogen or nonpathogen E. coli, O111:B4 and EH100, respectively, induced smooth muscle alterations that progressively increased, prolonging incubation, whereas TLR2 ligands induced short-term alterations, of a lesser magnitude, which decreased over time. The real-time polymerase chain reaction analysis showed that HSMC express mRNA for TLR1, 2, 4, and 6, substantiating a direct effect of TLR ligands on human colonic smooth muscle. CONCLUSIONS: This study highlights that bacterial products can directly affect gastrointestinal motility and that TLRs subtypes may differ in their cellular activity.


Escherichia coli/immunology , Gastrointestinal Motility/drug effects , Lipopolysaccharides/pharmacology , Myocytes, Smooth Muscle/drug effects , Shigella flexneri/immunology , Toll-Like Receptors/metabolism , Cells, Cultured , Colon/cytology , Colon/immunology , Colon/metabolism , Colon/physiopathology , Escherichia coli/metabolism , Gastrointestinal Motility/physiology , Humans , Immunity, Innate , Ligands , Metagenome , Muscle Contraction , Myocytes, Smooth Muscle/immunology , Myocytes, Smooth Muscle/metabolism , RNA, Messenger/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Shigella flexneri/metabolism , Toll-Like Receptor 2/drug effects , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/drug effects , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Toll-Like Receptors/drug effects , Toll-Like Receptors/genetics
11.
J Cell Physiol ; 223(2): 442-50, 2010 May.
Article En | MEDLINE | ID: mdl-20112289

Endotoxemia by bacterial lipopolysaccharide (LPS) has been reported to affect gut motility specifically depending on Toll-like receptor 4 activation (TLR4). However, the direct impact of LPS ligation to TLR4 on human smooth muscle cells (HSMC) activity still remains to be elucidated. The present study shows that TLR4, its associated molecule MD2, and TLR2 are constitutively expressed on cultured HSMC and that, once activated, they impair HSMC function. The stimulation of TLR4 by LPS induced a time- and dose-dependent contractile dysfunction, which was associated with a decrease of TLR2 messenger, a rearrangement of microfilament cytoskeleton and an oxidative imbalance, i.e., the formation of reactive oxygen species (ROS) together with the depletion of GSH content. An alteration of mitochondria, namely a hyperpolarization of their membrane potential, was also detected. Most of these effects were partially prevented by the NADPH oxidase inhibitor apocynin or the NFkappaB inhibitor MG132. Finally, a 24 h washout in LPS-free medium almost completely restored morphofunctional and biochemical HSMC resting parameters, even if GSH levels remained significantly lower and no recovery was observed in TLR2 expression. Thus, the exposure to bacterial endotoxin directly and persistently impaired gastrointestinal smooth muscle activity indicating that HSMC actively participate to dysmotility during infective burst. The knowledge of these interactions might provide novel information on the pathogenesis of infection-associated gut dysmotility and further clues for the development of new therapeutic strategies.


Colitis/complications , Colon/metabolism , Gastrointestinal Motility/physiology , Ileus/microbiology , Myocytes, Smooth Muscle/metabolism , Toll-Like Receptor 4/metabolism , Cells, Cultured , Colitis/physiopathology , Colon/cytology , Colon/physiopathology , Dose-Response Relationship, Drug , Endotoxemia/chemically induced , Endotoxemia/physiopathology , Gastrointestinal Motility/drug effects , Humans , Ileus/physiopathology , Inflammation Mediators/pharmacology , Lipopolysaccharides/pharmacology , Lymphocyte Antigen 96/drug effects , Lymphocyte Antigen 96/metabolism , Membrane Potential, Mitochondrial/drug effects , Membrane Potential, Mitochondrial/physiology , Muscle Contraction/drug effects , Muscle Contraction/physiology , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/drug effects , Oxidative Stress/drug effects , Oxidative Stress/physiology , Toll-Like Receptor 2/drug effects , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/drug effects
...