Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioconjug Chem ; 35(1): 115-124, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38173338

RESUMEN

Antibody-drug conjugates (ADCs) make up a growing class of targeted therapeutics with important applications in cancer treatment. ADCs are highly modular in nature and thus can be engineered to target any cancer type, but their efficacy is strongly influenced by the specific choice of payload, antibody, and target cell. Considering the number of possible antibody-payload combinations, ADC development would benefit from an efficient method to narrow the number of ADC compositions to those with the highest and most universal potency prior to assessing pharmacokinetics and pharmacodynamics in animal models. To facilitate the identification of optimal ADC compositions, we describe the use of photoreactive antibody-binding domain-drug conjugates (known commercially as oYo-Link) to enable the site-specific labeling of off-the-shelf antibodies. This approach allows for the rapid generation of ADCs with a drug-to-antibody ratio of ∼2 with no subsequent purification required. As a demonstration of this approach, ADCs were generated with different combinations of tubulin-inhibitor drugs (DM1, DM4, VcMMAE, and VcMMAF) and anti-EGFR antibodies (cetuximab, panitumumab, anti-EGFR clone 425, and anti-EGFR clone 528) and were delivered to three EGFR-expressing cell lines (A431, A549, and MDA-MB-231). Real-time cytolysis assays indicated that the most effective antibody varied based on the choice of cell line: cetuximab was most potent against A431 cells, while 425 and 528 led to the greatest cytotoxicity against A549 and MDA-MB-231 cells. These results did not correlate with differences in measured anti-EGFR binding affinity as cetuximab had the highest affinity across all three cell lines, while 425 and 528 had the lowest affinities for all three cell lines. Panitumumab, which had the second-highest anti-EGFR affinity, exhibited the least effective cytolysis across A431, A549, and MDA-MB-231 cells. By demonstrating that ADC potency toward a given target is dependent on both the antibody and drug chosen, these findings can guide the selection of ADCs for further in vivo analysis.


Asunto(s)
Inmunoconjugados , Animales , Inmunoconjugados/química , Cetuximab/farmacología , Panitumumab , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Biomaterials ; 275: 120982, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34214785

RESUMEN

Severe peripheral nerve injuries often result in permanent loss of function of the affected limb. Current treatments are limited by their efficacy in supporting nerve regeneration and behavioral recovery. Here we demonstrate that electrical stimulation through conductive nerve guides (CNGs) enhances the efficacy of human neural progenitor cells (hNPCs) in treating a sciatic nerve transection in rats. Electrical stimulation strengthened the therapeutic potential of NPCs by upregulating gene expression of neurotrophic factors which are critical in augmenting synaptic remodeling, nerve regeneration, and myelination. Electrically-stimulated hNPC-containing CNGs are significantly more effective in improving sensory and motor functions starting at 1-2 weeks after treatment than either treatment alone. Electrophysiology and muscle assessment demonstrated successful re-innervation of the affected target muscles in this group. Furthermore, histological analysis highlighted an increased number of regenerated nerve fibers with thicker myelination in electrically-stimulated hNPC-containing CNGs. The elevated expression of tyrosine kinase receptors (Trk) receptors, known to bind to neurotrophic factors, indicated the long-lasting effect from electrical stimulation on nerve regeneration and distal nerve re-innervation. These data suggest that electrically-enhanced stem cell-based therapy provides a regenerative rehabilitative approach to promote peripheral nerve regeneration and functional recovery.


Asunto(s)
Células-Madre Neurales , Traumatismos de los Nervios Periféricos , Animales , Axones , Estimulación Eléctrica , Humanos , Regeneración Nerviosa , Traumatismos de los Nervios Periféricos/terapia , Polímeros , Ratas , Recuperación de la Función , Nervio Ciático
3.
Sci Rep ; 9(1): 19565, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31863072

RESUMEN

Human induced pluripotent stem cell-derived neural progenitor cells (hNPCs) are a promising cell source for stem cell transplantation to treat neurological diseases such as stroke and peripheral nerve injuries. However, there have been limited studies investigating how the dimensionality of the physical and electrical microenvironment affects hNPC function. In this study, we report the fabrication of two- and three-dimensional (2D and 3D respectively) constructs composed of a conductive polymer to compare the effect of electrical stimulation of hydrogel-immobilized hNPCs. The physical dimension (2D vs 3D) of stimulating platforms alone changed the hNPCs gene expression related to cell proliferation and metabolic pathways. The addition of electrical stimulation was critical in upregulating gene expression of neurotrophic factors that are important in regulating cell survival, synaptic remodeling, and nerve regeneration. This study demonstrates that the applied electrical field controls hNPC properties depending on the physical nature of stimulating platforms and cellular metabolic states. The ability to control hNPC functions can be beneficial in understanding mechanistic changes related to electrical modulation and devising novel treatment methods for neurological diseases.


Asunto(s)
Células-Madre Neurales/citología , Neuronas/citología , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Supervivencia Celular/fisiología , Electrofisiología , Análisis de Elementos Finitos , Humanos , Hidrogeles/química , Células Madre Pluripotentes Inducidas/citología , Neuronas/metabolismo , Polímeros/química , Andamios del Tejido/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...