Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Nat Commun ; 15(1): 5574, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956430

RESUMEN

The biomedical research community addresses reproducibility challenges in animal studies through standardized nomenclature, improved experimental design, transparent reporting, data sharing, and centralized repositories. The ARRIVE guidelines outline documentation standards for laboratory animals in experiments, but genetic information is often incomplete. To remedy this, we propose the Laboratory Animal Genetic Reporting (LAG-R) framework. LAG-R aims to document animals' genetic makeup in scientific publications, providing essential details for replication and appropriate model use. While verifying complete genetic compositions may be impractical, better reporting and validation efforts enhance reliability of research. LAG-R standardization will bolster reproducibility, peer review, and overall scientific rigor.


Asunto(s)
Animales de Laboratorio , Guías como Asunto , Animales , Animales de Laboratorio/genética , Reproducibilidad de los Resultados , Proyectos de Investigación , Experimentación Animal/normas , Investigación Biomédica/normas
2.
mSystems ; 8(4): e0015123, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37458451

RESUMEN

Colon cancer onset is strongly associated with the differences in microbial taxa in the gastrointestinal tract. Although recent studies highlight the role of individual taxa, the effect of a complex gut microbiome (GM) on the metabolome and host transcriptome is still unknown. We used a multi-omics approach to determine how differences in the GM affect the susceptibility to adenoma development in a rat model of human colon cancer. Ultra-high performance liquid chromatography mass spectrometry of feces collected prior to observable disease onset identified putative metabolite profiles that likely predict future disease severity. Transcriptome analyses performed after disease onset from normal colonic epithelium and tumor tissues show a correlation between GM and host gene expression. Integrated pathway analyses of the metabolome and transcriptome based on putatively identified metabolic features indicate that bile acid biosynthesis is enriched in rats with high tumors along with increased fatty acid metabolism and mucin biosynthesis. Targeted pyrosequencing of the Pirc allele indicates that the GM alters the mechanism of adenoma development and may drive an epigenetic pathway of tumor suppressor silencing. This study reveals how untargeted metabolomics identifies signatures of susceptibility and integrated analyses uncover pathways of differential mechanisms of loss of tumor suppressor gene function and for potential prevention and therapeutic intervention. IMPORTANCE The association between the gut microbiome and colon cancer is significant but difficult to test in model systems. This study highlights the association of differences in the pathogen-free gut microbiome to changes in the host transcriptome and metabolome that correlate with colon adenoma initiation and development in a rat genetic model of early colon cancer. The utilization of a multi-omics approach integrating metabolomics and transcriptomics reveals differences in pathways including bile acid biosynthesis and fatty acid metabolism. The study also shows that differences in gut microbiomes significantly alter the mechanism of adenoma formation, shifting from genetic changes to epigenetic changes that initiate the early loss of tumor suppressor function. These findings enhance our understanding of the gut microbiome's role in colon cancer susceptibility, offer insights into potential biomarkers and therapeutic targets, and may pave the way for future prevention and intervention strategies.


Asunto(s)
Adenoma , Neoplasias del Colon , Microbioma Gastrointestinal , Humanos , Ratas , Animales , Microbioma Gastrointestinal/genética , Multiómica , Adenoma/genética , Neoplasias del Colon/genética , Ácidos y Sales Biliares , Ácidos Grasos
3.
Theriogenology ; 198: 69-74, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36563630

RESUMEN

A modified KSOM for rat embryo culture (KSOM-R), which has enriched taurine, glycine, glutamic acid, and alanine, promoted rat embryo development in vitro. Since mice and rats share similar amino acid profiles in their female reproductive tracts, this study explored whether KSOM-R would also have a positive effect on mouse embryo development and if KSOM-R modifications could extend its shelf time at 2-8 °C for consistency. We first examined the effects of newly made (≤1 month at 2-8 °C) antibiotics-free KSOM-R (mKSOM-R), antibiotics-free KSOM (mKSOM) and KSOM on the development of in vivo or in vitro derived C57BL/6NJ zygotes. We then investigated the effect of extended shelf life (6 months at 2-8 °C) of mKSOM-R and mKOSM on the development of C57BL/6NJ mouse and Sprague Dawley (SD) rat embryos. The results showed that there were no significant differences in cleavage, blastocyst, and hatching rates of C57BL/6NJ embryos among the three freshly made media. After 6 months of storage at 2-8 °C, mKSOM-R and mKSOM were still able to support the development of in vivo C57BL/6NJ zygotes at comparable rates seen with newly made (≤1 month at 2-8 °C) KSOM (control) in terms of cleavage, blastocyst formation and hatching. There were also no significant differences in total cell numbers in day 4 blastocysts among the three groups. After surgical embryo transfers, C57BL/6NJ blastocysts cultured in mKSOM-R (6 months at 2-8 °C) and newly made (≤1 month at 2-8 °C) KSOM culture developed into live pups. These pups had no gross abnormalities in animal morphology and growth. SD zygotes cultured in mKSOM-R stored at 2-8 °C for 6 months developed at comparable rates in cleavage, blastocyst and hatching rates when compared to those cultured in newly made mKSOM-R (≤1 month at 2-8 °C). The data showed that, although no significant beneficial effects were observed on mouse embryo development, mKSOM-R was able to support both mouse and rat embryo development in vitro. Additionally, mKSOM-R and mKSOM can be stored at 2-8 °C for at least 6 months without significantly compromising quality. This study suggests that it is possible to reduce the media inventory by using only mKSOM-R to culture both mouse and rat embryos, and quality media with extended shelf life can be made through modifications.


Asunto(s)
Desarrollo Embrionario , Cigoto , Embarazo , Ratones , Ratas , Animales , Femenino , Medios de Cultivo/farmacología , Ratones Endogámicos C57BL , Ratas Sprague-Dawley , Blastocisto
4.
Mamm Genome ; 33(1): 203-212, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34313795

RESUMEN

The Mutant Mouse Resource and Research Center (MMRRC) Program is the pre-eminent public national mutant mouse repository and distribution archive in the USA, serving as a national resource of mutant mice available to the global scientific community for biomedical research. Established more than two decades ago with grants from the National Institutes of Health (NIH), the MMRRC Program supports a Consortium of regionally distributed and dedicated vivaria, laboratories, and offices (Centers) and an Informatics Coordination and Service Center (ICSC) at three academic teaching and research universities and one non-profit genetic research institution. The MMRRC Program accepts the submission of unique, scientifically rigorous, and experimentally valuable genetically altered and other mouse models donated by academic and commercial scientists and organizations for deposition, maintenance, preservation, and dissemination to scientists upon request. The four Centers maintain an archive of nearly 60,000 mutant alleles as live mice, frozen germplasm, and/or embryonic stem (ES) cells. Since its inception, the Centers have fulfilled 13,184 orders for mutant mouse models from 9591 scientists at 6626 institutions around the globe. Centers also provide numerous services that facilitate using mutant mouse models obtained from the MMRRC, including genetic assays, microbiome analysis, analytical phenotyping and pathology, cryorecovery, mouse husbandry, infectious disease surveillance and diagnosis, and disease modeling. The ICSC coordinates activities between the Centers, manages the website (mmrrc.org) and online catalog, and conducts communication, outreach, and education to the research community. Centers preserve, secure, and protect mutant mouse lines in perpetuity, promote rigor and reproducibility in scientific experiments using mice, provide experiential training and consultation in the responsible use of mice in research, and pursue cutting edge technologies to advance biomedical studies using mice to improve human health. Researchers benefit from an expansive list of well-defined mouse models of disease that meet the highest standards of rigor and reproducibility, while donating investigators benefit by having their mouse lines preserved, protected, and distributed in compliance with NIH policies.


Asunto(s)
Investigación Biomédica , Modelos Animales de Enfermedad , Ratones , National Institutes of Health (U.S.) , Animales , Humanos , Ratones/genética , Reproducibilidad de los Resultados , Estados Unidos
5.
BMC Cancer ; 20(1): 600, 2020 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-32600361

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is a multifactorial disease resulting from both genetic predisposition and environmental factors including the gut microbiota (GM), but deciphering the influence of genetic variants, environmental variables, and interactions with the GM is exceedingly difficult. We previously observed significant differences in intestinal adenoma multiplicity between C57BL/6 J-ApcMin (B6-Min/J) from The Jackson Laboratory (JAX), and original founder strain C57BL/6JD-ApcMin (B6-Min/D) from the University of Wisconsin. METHODS: To resolve genetic and environmental interactions and determine their contributions we utilized two genetically inbred, independently isolated ApcMin mouse colonies that have been separated for over 20 generations. Whole genome sequencing was used to identify genetic variants unique to the two substrains. To determine the influence of genetic variants and the impact of differences in the GM on phenotypic variability, we used complex microbiota targeted rederivation to generate two Apc mutant mouse colonies harboring complex GMs from two different sources (GMJAX originally from JAX or GMHSD originally from Envigo), creating four ApcMin groups. Untargeted metabolomics were used to characterize shifts in the fecal metabolite profile based on genetic variation and differences in the GM. RESULTS: WGS revealed several thousand high quality variants unique to the two substrains. No homozygous variants were present in coding regions, with the vast majority of variants residing in noncoding regions. Host genetic divergence between Min/J and Min/D and the complex GM additively determined differential adenoma susceptibility. Untargeted metabolomics revealed that both genetic lineage and the GM collectively determined the fecal metabolite profile, and that each differentially regulates bile acid (BA) metabolism. Metabolomics pathway analysis facilitated identification of a functionally relevant private noncoding variant associated with the bile acid transporter Fatty acid binding protein 6 (Fabp6). Expression studies demonstrated differential expression of Fabp6 between Min/J and Min/D, and the variant correlates with adenoma multiplicity in backcrossed mice. CONCLUSIONS: We found that both genetic variation and differences in microbiota influences the quantitiative adenoma phenotype in ApcMin mice. These findings demonstrate how the use of metabolomics datasets can aid as a functional genomic tool, and furthermore illustrate the power of a multi-omics approach to dissect complex disease susceptibility of noncoding variants.


Asunto(s)
Adenoma/genética , Neoplasias Colorrectales/genética , Microbioma Gastrointestinal/fisiología , Predisposición Genética a la Enfermedad , Adenoma/metabolismo , Adenoma/microbiología , Proteína de la Poliposis Adenomatosa del Colon/genética , Alelos , Animales , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/microbiología , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Metabolómica , Metagenómica , Ratones , Mutación
6.
Mamm Genome ; 30(9-10): 237-244, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31549210

RESUMEN

Tumor multiplicity in the ApcMin (Min) mouse model of CRC is a classic quantitative trait that is subject to complex genetic and environmental factors, and therefore serves as an ideal platform to study modifiers of disease. While disparate inbred genetic backgrounds have well-characterized modifying effects on tumor multiplicity, it is unclear whether more closely related backgrounds such as C57BL/6J and C57BL6/N differentially modify the phenotype. Furthermore, it is unknown whether the complex gut microbiota (GM) influences the effects of these background strains. We assessed tumor multiplicity in F1 mice generated from the original Min colony from the McArdle Laboratory at the University of Wisconsin (C57BL/6JMlcr-ApcMin) crossed with either C57BL/6J or C57BL/6N wild-type mice. We also used complex microbiota targeted rederivation to rederive B6NB6JMF1-ApcMin embryos using surrogate dams harboring complex GMs from two different sources to determine the effects of complex GM. Both B6/J and B6/N backgrounds significantly repressed tumor multiplicity. However, the B6/N background conferred a stronger dominant suppressive effect than B6/J. Moreover, we observed that complex GM likely modulated B6/N-mediated adenoma repression such that two distinct communities conferred differential tumor multiplicity in isogenic B6NB6JMF1-ApcMin mice. Although we cannot rule out possible maternal effects of embryo transfer, we show that B6/J and B6/N have modifier effects on Min, and these effects are further altered by the complex GM. Foremost, strict attention to genetic background and environmental variables influencing the GM is critical to enhance reproducibility in models of complex disease traits.


Asunto(s)
Adenoma/genética , Adenoma/microbiología , Neoplasias Colorrectales/genética , Microbioma Gastrointestinal , Adenoma/inmunología , Proteína de la Poliposis Adenomatosa del Colon/genética , Proteína de la Poliposis Adenomatosa del Colon/inmunología , Animales , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/microbiología , Modelos Animales de Enfermedad , Femenino , Antecedentes Genéticos , Humanos , Masculino , Ratones , Ratones Endogámicos
7.
Methods Mol Biol ; 2018: 195-212, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31228158

RESUMEN

It is becoming increasingly apparent that microbiota have measurable effects on numerous phenotypes in laboratory animals. This "second genome" has often been disregarded or ignored due to its commensal nonpathogenic nature, and the difficulty, expense, and analysis of sequence. Recent advances in sequencing methods and analyses of large datasets have made characterization of microbiota populations routine and have uncovered previously unknown relationships of microbial communities and host biological systems. The largest and most diverse microbial community in the laboratory rat is in the gut, and has been shown to affect the physiology of the whole animal, and genetic disease penetrance. We present here a cost-effective method for the characterization of the rat fecal microbiota through multiplexed 16S ribosomal sequencing and freely available software.


Asunto(s)
Bacterias/clasificación , Heces/microbiología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN Ribosómico 16S/genética , Animales , Bacterias/genética , ADN Bacteriano/genética , ADN Ribosómico/genética , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento/economía , Filogenia , Ratas , Análisis de Secuencia de ADN/economía , Análisis de Secuencia de ADN/métodos , Programas Informáticos
8.
Oncotarget ; 9(55): 30561-30567, 2018 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-30093969

RESUMEN

The large randomized placebo controlled trials of the Women's Health Initiative have shown that the combination of estrogen and progestin medroxyprogesterone acetate (MPA) protects from colorectal cancer in postmenopausal women. No effect was observed in women treated with estrogen alone. This suggests that progesterone, or more specifically the progestin MPA may have chemopreventive activity. The effect of MPA on colorectal carcinogenesis has been difficult to study in animal models. Most models are not affected by either depleting female hormones by ovariectomy or treatment with MPA. Importantly, an ovariectomy fails to reproduce one of the hall marks of the postmenopausal state in women with intact ovaries. That is, the continued production of androgens by the atrophic postmenopausal ovaries. Here we show that adenoma incidence is increased in the vinyl cylcohexene diepoxide (VCD) mouse model of the menopause compared to age matched fertile female mice. Treatment with MPA protected VCD treated mice from adenomagenesis, but had no effect on adenoma numbers in age-matched fertile female mice. Our data show that the protective effect of MPA depends on the postmenopausal state and suggest that MPA monotherapy may be studied as a chemopreventive agent in postmenopausal women.

9.
Mol Imaging ; 17: 1536012118790065, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30064304

RESUMEN

The goal of these studies was to use a tumor-targeting, near-infrared (NIR) fluorescent peptide to evaluate early detection and to guide surgical removal of polyps in a genetically engineered rat model of spontaneous colorectal cancer. This peptide, LS301, was conjugated to Cy7.5 and applied topically to the colon of adenoma-bearing Pirc rats. Ten minutes after administration, rats underwent targeted NIR laser colonoscopy. Rats were also evaluated by white light colonoscopy and narrow-band imaging, for comparison to the NIR technique. Unlike white light and narrow-band colonoscopy, NIR imaging detected unexpected flat lesions in young Pirc rats. NIR imaging was also used to assess resection margins after electrocauterization of polyps. Tumor margins remained negative at 5 weeks postsurgery, demonstrating successful polypectomy. The present studies show that NIR-targeted colonoscopy is an attractive strategy to improve screening for and resection of colorectal neoplasia.


Asunto(s)
Pólipos del Colon/diagnóstico , Colonoscopía , Neoplasias Colorrectales/diagnóstico , Detección Precoz del Cáncer/métodos , Péptidos/química , Espectroscopía Infrarroja Corta , Animales , Pólipos del Colon/cirugía , Modelos Animales de Enfermedad , Fluorescencia , Ratas
10.
BMC Cancer ; 17(1): 158, 2017 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-28235398

RESUMEN

BACKGROUND: TSPYL5, a putative tumor suppressor gene, belongs to the nucleosome assembly protein family. The chromosomal location of the TSPYL5 gene is 8Q22.1, and its exact role in prostate cancer etiology remains unclear. Further TSPYL5 gene and protein expression in prostate carcinoma cells and diseased tissues including its susceptibility for epigenetic silencing is unknown. Also, not known is the variation in TSPYL5 protein expression with regards to progression of prostatic carcinoma and its possible role in drug sensitivity. METHODS: TSPYL5, DNMT-1 and DNMT-B gene expression in DU145, LNCaP and RWPE-1 cells and prostate tumor tissues was analyzed by qRT-PCR and RT-PCR. Demethylation experiments were done by treating DU145 and LNCaP cells with 5-aza-2'-deoxycytidine in vitro. Methylation analysis of TSPYL5 gene was performed by methylation specific PCR and pyrosequencing. TSPYL5 protein expression in benign and diseased prostate tumor tissues was performed by immunohistochemistry and in the cells by Western blotting. RESULTS: TSPYL5 was differentially expressed in non-tumorigenic prostate epithelial cells (RWPE-1), androgen independent (DU145), dependent (LNCaP) prostate carcinoma cells and tissues. Methylation-specific PCR and pyrosequencing analysis identified an inverse relationship between DNA methylation and expression leading to the silencing of TSPYL5 gene. Treatment of prostate carcinoma cells in which TSPYL5 was absent or low (DU145 and LNCaP) with the demethylating agent 5-aza-2'-deoxycytidine upregulated its expression in these cells. Immunohistochemical studies clearly identified TSPYL5 protein in benign tissue and in tumors with Gleason score (GS) of 6 and 7. TSPYL5 protein levels were very low in tumors of GS ≥ 8. TSPYL5 overexpression in LNCaP cells increased the cell sensitivity to chemotherapy drugs such as docetaxel and paclitaxel, as measured by the cellular viability. Furthermore, the cells also exhibited reduced CDKN1A expression with only marginal reduction in pAKT. CONCLUSIONS: Decrease in TSPYL5 protein in advanced tumors might possibly function as an indicator of prostate tumor progression. Its absence due to methylation-induced silencing can lead to reduced drug sensitivity in prostate carcinoma.


Asunto(s)
Azacitidina/análogos & derivados , Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Proteínas Nucleares/genética , Neoplasias de la Próstata/metabolismo , Adulto , Anciano , Antimetabolitos Antineoplásicos/farmacología , Antimetabolitos Antineoplásicos/uso terapéutico , Azacitidina/farmacología , Azacitidina/uso terapéutico , Línea Celular Tumoral , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/genética , Decitabina , Epigénesis Genética , Humanos , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Transducción de Señal
11.
Dis Model Mech ; 9(10): 1139-1146, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27528400

RESUMEN

Somatic mutations in the Tp53 tumor suppressor gene are the most commonly seen genetic alterations in cancer, and germline mutations in Tp53 predispose individuals to a variety of early-onset cancers. Development of appropriate translational animal models that carry mutations in Tp53 and recapitulate human disease are important for drug discovery, biomarker development and disease modeling. Current Tp53 mouse and rat models have significant phenotypic and genetic limitations, and often do not recapitulate certain aspects of human disease. We used a marker-assisted speed congenic approach to transfer a well-characterized Tp53-mutant allele from an outbred rat to the genetically inbred Fischer-344 (F344) rat to create the F344-Tp53tm1(EGFP-Pac)Qly/Rrrc (F344-Tp53) strain. On the F344 genetic background, the tumor spectrum shifted, with the primary tumor types being osteosarcomas and meningeal sarcomas, compared to the hepatic hemangiosarcoma and lymphoma identified in the original outbred stock model. The Fischer model is more consistent with the early onset of bone and central nervous system sarcomas found in humans with germline Tp53 mutations. The frequency of osteosarcomas in F344-Tp53 homozygous and heterozygous animals was 57% and 36%, respectively. Tumors were highly representative of human disease radiographically and histologically, with tumors found primarily on long bones with frequent pulmonary metastases. Importantly, the rapid onset of osteosarcomas in this promising new model fills a current void in animal models that recapitulate human pediatric osteosarcomas and could facilitate studies to identify therapeutic targets.


Asunto(s)
Neoplasias Óseas/patología , Neoplasias Encefálicas/patología , Técnicas de Inactivación de Genes , Proteína p53 Supresora de Tumor/deficiencia , Animales , Neoplasias Óseas/genética , Neoplasias Encefálicas/genética , Carcinogénesis/genética , Carcinogénesis/patología , Modelos Animales de Enfermedad , Neoplasias Pulmonares/secundario , Neoplasias Meníngeas/patología , Mutación/genética , Metástasis de la Neoplasia , Osteosarcoma/diagnóstico por imagen , Osteosarcoma/patología , Fenotipo , Ratas Endogámicas F344 , Factores de Tiempo , Proteína p53 Supresora de Tumor/metabolismo
12.
Oncotarget ; 7(20): 28947-60, 2016 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-26959117

RESUMEN

Consumption of Western diet (WD), contaminated with environmental toxicants, has been implicated as one of the risk factors for sporadic colon cancer. Our earlier studies using a mouse model revealed that compared to unsaturated dietary fat, the saturated dietary fat exacerbated the development of colon tumors caused by B(a)P. The objective of this study was to study how WD potentiates B(a)P-induced colon carcinogenesis in the adult male rats that carry a mutation in the Apc locus - the polyposis in the rat colon (PIRC) rats. Groups of PIRC rats were fed with AIN-76A standard diet (RD) or Western diet (WD) and received 25, 50, or 100 µg B(a)P/kg body weight (wt) via oral gavage for 60 days. Subsequent to exposure, rats were euthanized; colons were retrieved and preserved in 10% formalin for counting the polyp numbers, measuring the polyp size, and histological analyses. Blood samples were collected and concentrations of cholesterol, triglycerides, glucose, insulin and leptin were measured. Rats that received WD + B(a)P showed increased levels of cholesterol, triglycerides, and leptin in comparison to RD + B(a)P groups or controls. The colon tumor numbers showed a B(a)P dose-response relationship. Adenomas with high grade dysplasia were prominent in B(a)P + WD rats compared to B(a)P + RD rats and controls (p < 0.05). The larger rat model system used in this study allows for studying more advanced tumor phenotypes over a longer duration and delineating the role of diet - toxicant interactions in sporadic colon tumor development.


Asunto(s)
Neoplasias del Colon/patología , Dieta Occidental/efectos adversos , Animales , Benzo(a)pireno/toxicidad , Carcinógenos/toxicidad , Neoplasias del Colon/inducido químicamente , Modelos Animales de Enfermedad , Masculino , Ratas , Ratas Mutantes
13.
Comp Med ; 65(5): 424-8, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26473347

RESUMEN

A socially-housed New Zealand white rabbit presented with a large subcutaneous mass on the ventral thorax approximately 11 mo after the intrahepatic delivery of a suspension of VX2 carcinoma cells to induce hepatocellular carcinoma as part of a nanoparticle study. The mass and closely associated axillary lymph node were removed en bloc. Immunohistochemical staining identified the mass as an undifferentiated carcinoma. The rabbit demonstrated no appreciable pathology at the study end point at 16 mo after VX2 inoculation. An additional rabbit from the same VX2 injection cohort was found at necropsy to have an unanticipated intraabdominal mass, also identified as an undifferentiated carcinoma. This case report summarizes the molecular analysis of both tumors through a novel PCR assay, which identified the delayed and aberrant onset of VX2 carcinoma in an extended timeframe not previously reported.


Asunto(s)
Neoplasias Abdominales/patología , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas Experimentales/patología , Neoplasias Torácicas/patología , Neoplasias Abdominales/genética , Neoplasias Abdominales/metabolismo , Neoplasias Abdominales/virología , Animales , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/virología , Línea Celular Tumoral , Papillomavirus del Conejo de Rabo Blanco/patogenicidad , Inmunohistoquímica , Neoplasias Hepáticas Experimentales/genética , Neoplasias Hepáticas Experimentales/metabolismo , Neoplasias Hepáticas Experimentales/virología , Trasplante de Neoplasias , Reacción en Cadena de la Polimerasa , Conejos , Neoplasias Torácicas/genética , Neoplasias Torácicas/metabolismo , Neoplasias Torácicas/virología , Factores de Tiempo
14.
Oncotarget ; 6(32): 33689-704, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26378041

RESUMEN

Recent studies investigating the human microbiome have identified particular bacterial species that correlate with the presence of colorectal cancer. To evaluate the role of qualitatively different but naturally occurring gut microbiota and the relationship with colorectal cancer development, genetically identical embryos from the Polyposis in Rat Colon (Pirc) rat model of colorectal cancer were transferred into recipients of three different genetic backgrounds (F344/NHsd, LEW/SsNHsd, and Crl:SD). Tumor development in the pups was tracked longitudinally via colonoscopy, and end-stage tumor burden was determined. To confirm vertical transmission and identify associations between the gut microbiota and disease phenotype, the fecal microbiota was characterized in recipient dams 24 hours pre-partum, and in Pirc rat offspring prior to and during disease progression. Our data show that the gut microbiota varies between rat strains, with LEW/SsNHsd having a greater relative abundance of the bacteria Prevotella copri. The mature gut microbiota of pups resembled the profile of their dams, indicating that the dam is the primary determinant of the developing microbiota. Both male and female F344-Pirc rats harboring the Lewis microbiota had decreased tumor burden relative to genetically identical rats harboring F344 or SD microbiota. Significant negative correlations were detected between tumor burden and the relative abundance of specific taxa from samples taken at weaning and shortly thereafter, prior to observable adenoma development. Notably, this naturally occurring variation in the gut microbiota is associated with a significant difference in severity of colorectal cancer, and the abundance of certain taxa is associated with decreased tumor burden.


Asunto(s)
Neoplasias Colorrectales/microbiología , Animales , Neoplasias Colorrectales/patología , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Femenino , Microbioma Gastrointestinal , Humanos , Masculino , Ratas , Ratas Endogámicas F344 , Ratas Sprague-Dawley
15.
Proc Natl Acad Sci U S A ; 111(46): 16514-9, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25368192

RESUMEN

It recently has been recognized that men develop colonic adenomas and carcinomas at an earlier age and at a higher rate than women. In the Apc(Pirc/+) (Pirc) rat model of early colonic cancer, this sex susceptibility was recapitulated, with male Pirc rats developing twice as many adenomas as females. Analysis of large datasets revealed that the Apc(Min/+) mouse also shows enhanced male susceptibility to adenomagenesis, but only in the colon. In addition, WT mice treated with injections of the carcinogen azoxymethane (AOM) showed increased numbers of colonic adenomas in males. The mechanism underlying these observations was investigated by manipulation of hormonal status. The preponderance of colonic adenomas in the Pirc rat model allowed a statistically significant investigation in vivo of the mechanism of sex hormone action on the development of colonic adenomas. Females depleted of endogenous hormones by ovariectomy did not exhibit a change in prevalence of adenomas, nor was any effect observed with replacement of one or a combination of female hormones. In contrast, depletion of male hormones by orchidectomy (castration) markedly protected the Pirc rat from adenoma development, whereas supplementation with testosterone reversed that effect. These observations were recapitulated in the AOM mouse model. Androgen receptor was undetectable in the colon or adenomas, making it likely that testosterone acts indirectly on the tumor lineage. Our findings suggest that indirect tumor-promoting effects of testosterone likely explain the disparity between the sexes in the development of colonic adenomas.


Asunto(s)
Adenoma/epidemiología , Carcinógenos/toxicidad , Neoplasias del Colon/epidemiología , Dihidrotestosterona/toxicidad , Hormonas Esteroides Gonadales/fisiología , Neoplasias Hormono-Dependientes/epidemiología , Adenoma/inducido químicamente , Adenoma/fisiopatología , Adenoma/prevención & control , Poliposis Adenomatosa del Colon/epidemiología , Poliposis Adenomatosa del Colon/genética , Poliposis Adenomatosa del Colon/fisiopatología , Animales , Animales Congénicos , Azoximetano/toxicidad , Neoplasias del Colon/inducido químicamente , Neoplasias del Colon/fisiopatología , Neoplasias del Colon/prevención & control , Modelos Animales de Enfermedad , Estradiol/administración & dosificación , Estradiol/farmacología , Femenino , Genes APC , Terapia de Reemplazo de Hormonas , Humanos , Masculino , Acetato de Medroxiprogesterona/administración & dosificación , Acetato de Medroxiprogesterona/farmacología , Ratones , Ratones Endogámicos C57BL , Mutación , Neoplasias Hormono-Dependientes/fisiopatología , Neoplasias Hormono-Dependientes/prevención & control , Orquiectomía , Especificidad de Órganos , Ovariectomía , Posmenopausia , ARN Mensajero/análisis , Distribución Aleatoria , Ratas , Ratas Endogámicas F344 , Ratas Mutantes , Receptores Androgénicos/biosíntesis , Receptores Androgénicos/genética , Distribución por Sexo , Especificidad de la Especie
16.
Dis Model Mech ; 7(11): 1215-25, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25288683

RESUMEN

Prior to the advent of genetic engineering in the mouse, the rat was the model of choice for investigating the etiology of cancer. Now, recent advances in the manipulation of the rat genome, combined with a growing recognition of the physiological differences between mice and rats, have reignited interest in the rat as a model of human cancer. Two recently developed rat models, the polyposis in the rat colon (Pirc) and Kyoto Apc Delta (KAD) strains, each carry mutations in the intestinal-cancer-associated adenomatous polyposis coli (Apc) gene. In contrast to mouse models carrying Apc mutations, in which cancers develop mainly in the small intestine rather than in the colon and there is no gender bias, these rat models exhibit colonic predisposition and gender-specific susceptibility, as seen in human colon cancer. The rat also provides other experimental resources as a model organism that are not provided by the mouse: the structure of its chromosomes facilitates the analysis of genomic events, the size of its colon permits longitudinal analysis of tumor growth, and the size of biological samples from the animal facilitates multiplexed molecular analyses of the tumor and its host. Thus, the underlying biology and experimental resources of these rat models provide important avenues for investigation. We anticipate that advances in disease modeling in the rat will synergize with resources that are being developed in the mouse to provide a deeper understanding of human colon cancer.


Asunto(s)
Neoplasias del Colon/genética , Modelos Animales de Enfermedad , Mutación , Animales , Neoplasias del Colon/etiología , Neoplasias del Colon/patología , Diagnóstico Precoz , Genotipo , Humanos , Fenotipo , Ratas
17.
G3 (Bethesda) ; 4(6): 1113-21, 2014 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-24747760

RESUMEN

A central goal in the analysis of complex traits is to identify genes that modify a phenotype. Modifiers of a cancer phenotype may act either intrinsically or extrinsically on the salient cell lineage. Germline point mutagenesis by ethylnitrosourea can provide alleles for a gene of interest that include loss-, gain-, or alteration-of-function. Unlike strain polymorphisms, point mutations with heterozygous quantitative phenotypes are detectable in both essential and nonessential genes and are unlinked from other variants that might confound their identification and analysis. This report analyzes strategies seeking quantitative mutational modifiers of Apc(Min) in the mouse. To identify a quantitative modifier of a phenotype of interest, a cluster of test progeny is needed. The cluster size can be increased as necessary for statistical significance if the founder is a male whose sperm is cryopreserved. A second critical element in this identification is a mapping panel free of polymorphic modifiers of the phenotype, to enable low-resolution mapping followed by targeted resequencing to identify the causative mutation. Here, we describe the development of a panel of six "isogenic mapping partner lines" for C57BL/6J, carrying single-nucleotide markers introduced by mutagenesis. One such derivative, B6.SNVg, shown to be phenotypically neutral in combination with Apc(Min), is an appropriate mapping partner to locate induced mutant modifiers of the Apc(Min) phenotype. The evolved strategy can complement four current major initiatives in the genetic analysis of complex systems: the Genome-wide Association Study; the Collaborative Cross; the Knockout Mouse Project; and The Cancer Genome Atlas.


Asunto(s)
Genes Dominantes , Mutación Puntual , Carácter Cuantitativo Heredable , Animales , Cruzamiento , Mapeo Cromosómico , Cruzamientos Genéticos , Femenino , Frecuencia de los Genes , Genes APC , Genoma , Estudio de Asociación del Genoma Completo , Heterocigoto , Esperanza de Vida , Masculino , Ratones , Ratones Noqueados , Fenotipo , Polimorfismo de Nucleótido Simple
18.
Comp Med ; 64(2): 128-34, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24674588

RESUMEN

Many studies of the response of colonic tumors to therapeutics use tumor multiplicity as the endpoint to determine the effectiveness of the agent. These studies can be greatly enhanced by accurate measurements of tumor volume. Here we present a quantitative method to easily and accurately determine colonic tumor volume. This approach uses a biocompatible alginate to create a negative mold of a tumor-bearing colon; this mold is then used to make positive casts of dental stone that replicate the shape of each original tumor. The weight of the dental stone cast correlates highly with the weight of the dissected tumors. After refinement of the technique, overall error in tumor volume was 16.9% ± 7.9% and includes error from both the alginate and dental stone procedures. Because this technique is limited to molding of tumors in the colon, we utilized the Apc(Pirc/+) rat, which has a propensity for developing colonic tumors that reflect the location of the majority of human intestinal tumors. We have successfully used the described method to determine tumor volumes ranging from 4 to 196 mm³. Alginate molding combined with dental stone casting is a facile method for determining tumor volume in vivo without costly equipment or knowledge of analytic software. This broadly accessible method creates the opportunity to objectively study colonic tumors over time in living animals in conjunction with other experiments and without transferring animals from the facility where they are maintained.


Asunto(s)
Alginatos , Sulfato de Calcio , Neoplasias del Colon/diagnóstico , Neoplasias del Colon/patología , Animales , Ácido Glucurónico , Ácidos Hexurónicos , Ratas , Carga Tumoral
19.
G3 (Bethesda) ; 2(5): 569-78, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22670227

RESUMEN

The gene-trap lacZ reporter insertion, ROSA11, in the Cbx5 mouse gene illuminates the regulatory complexity of this locus in Apc(Min) (/+) mice. The insertion site of the ß-Geo gene-trap element lies in the 24-kb intron proximal to the coding region of Cbx5. Transcript analysis indicates that two promoters for Cbx5 flank this insertion site. Heterozygotes for the insertion express lacZ widely in fetal tissues but show limited expression in adult tissues. In the intestine, strong expression is limited to proliferative zones of crypts and tumors. Homozygotes for ROSA11, found at a lower than Mendelian frequency, express reduced levels of the coding region transcript in normal tissues, using a downstream promoter. Analysis via real-time polymerase chain reaction indicates that the upstream promoter is the dominant promoter in normal epithelium and tumors. Bioinformatic analysis of the Cbx5 locus indicates that WNT and its target transcription factor MYC can establish a feedback loop that may play a role in regulating the self-renewal of the normal intestinal epithelium and its tumors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA