RESUMEN
Growth and development shortfalls that are disproportionately prevalent in children living in poor environmental conditions are postulated to result, at least in part, from abnormal gut function. Using data from The Etiology, Risk Factors, and Interactions of Enteric Infections and Malnutrition and the Consequences for Child Health and Development (MAL-ED) longitudinal cohort study, we examine biomarkers of gut inflammation and permeability in relation to environmental exposures and feeding practices. Trends in the concentrations of three biomarkers, myeloperoxidase (MPO), neopterin (NEO), and α-1-antitrypsin (AAT), are described from fecal samples collected during the first 2 years of each child's life. A total of 22,846 stool samples were processed during the longitudinal sampling of 2,076 children 0-24 months of age. Linear mixed models were constructed to examine the relationship between biomarker concentrations and recent food intake, symptoms of illness, concurrent enteropathogen infection, and socioeconomic status. Average concentrations of MPO, NEO, and AAT were considerably higher than published references for healthy adults. The concentration of each biomarker tended to decrease over the first 2 years of life and was highly variable between samples from each individual child. Both MPO and AAT were significantly elevated by recent breast milk intake. All three biomarkers were associated with pathogen presence, although the strength and direction varied by pathogen. The interpretation of biomarker concentrations is subject to the context of their collection. Herein, we identify that common factors (age, breast milk, and enteric infection) influence the concentration of these biomarkers. Within the context of low- and middle-income communities, we observe concentrations that indicate gut abnormalities, but more appropriate reference standards are needed.
Asunto(s)
Permeabilidad de la Membrana Celular/fisiología , Heces/microbiología , Microbioma Gastrointestinal/fisiología , Inflamación/fisiopatología , Neopterin/análisis , Peroxidasa/análisis , alfa 1-Antitripsina/análisis , Bangladesh , Biomarcadores , Brasil , Preescolar , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Humanos , India , Lactante , Modelos Lineales , Estudios Longitudinales , Masculino , Nepal , Pakistán , Perú , Factores Socioeconómicos , Sudáfrica , TanzaníaRESUMEN
BACKGROUND: Most studies of the causes of diarrhoea in low-income and middle-income countries have looked at severe disease in people presenting for care, and there are few estimates of pathogen-specific diarrhoea burdens in the community. METHODS: We undertook a birth cohort study with not only intensive community surveillance for diarrhoea but also routine collection of non-diarrhoeal stools from eight sites in South America, Africa, and Asia. We enrolled children within 17 days of birth, and diarrhoeal episodes (defined as maternal report of three or more loose stools in 24 h, or one loose stool with visible blood) were identified through twice-weekly home visits by fieldworkers over a follow-up period of 24 months. Non-diarrhoeal stool specimens were also collected for surveillance for months 1-12, 15, 18, 21, and 24. Stools were analysed for a broad range of enteropathogens using culture, enzyme immunoassay, and PCR. We used the adjusted attributable fraction (AF) to estimate pathogen-specific burdens of diarrhoea. FINDINGS: Between November 26, 2009, and February 25, 2014, we tested 7318 diarrhoeal and 24â310 non-diarrhoeal stools collected from 2145 children aged 0-24 months. Pathogen detection was common in non-diarrhoeal stools but was higher with diarrhoea. Norovirus GII (AF 5·2%, 95% CI 3·0-7·1), rotavirus (4·8%, 4·5-5·0), Campylobacter spp (3·5%, 0·4-6·3), astrovirus (2·7%, 2·2-3·1), and Cryptosporidium spp (2·0%, 1·3-2·6) exhibited the highest attributable burdens of diarrhoea in the first year of life. The major pathogens associated with diarrhoea in the second year of life were Campylobacter spp (7·9%, 3·1-12·1), norovirus GII (5·4%, 2·1-7·8), rotavirus (4·9%, 4·4-5·2), astrovirus (4·2%, 3·5-4·7), and Shigella spp (4·0%, 3·6-4·3). Rotavirus had the highest AF for sites without rotavirus vaccination and the fifth highest AF for sites with the vaccination. There was substantial variation in pathogens according to geography, diarrhoea severity, and season. Bloody diarrhoea was primarily associated with Campylobacter spp and Shigella spp, fever and vomiting with rotavirus, and vomiting with norovirus GII. INTERPRETATION: There was substantial heterogeneity in pathogen-specific burdens of diarrhoea, with important determinants including age, geography, season, rotavirus vaccine usage, and symptoms. These findings suggest that although single-pathogen strategies have an important role in the reduction of the burden of severe diarrhoeal disease, the effect of such interventions on total diarrhoeal incidence at the community level might be limited.
Asunto(s)
Infecciones Bacterianas/microbiología , Países en Desarrollo/estadística & datos numéricos , Diarrea/microbiología , África/epidemiología , Asia/epidemiología , Bacterias/aislamiento & purificación , Infecciones Bacterianas/epidemiología , Preescolar , Estudios de Cohortes , Diarrea/epidemiología , Heces/microbiología , Femenino , Humanos , Incidencia , Lactante , Recién Nacido , Masculino , Reacción en Cadena de la Polimerasa , América del Sur/epidemiologíaRESUMEN
Campylobacter is a common bacterial enteropathogen that can be detected in stool by culture, enzyme immunoassay (EIA), or PCR. We compared culture for C. jejuni/C. coli, EIA (ProSpecT), and duplex PCR to distinguish Campylobacter jejuni/C. coli and non-jejuni/coli Campylobacter on 432 diarrheal and matched control stool samples from infants in a multisite longitudinal study of enteric infections in Tanzania, Bangladesh, and Peru. The sensitivity and specificity of culture were 8.5% and 97.6%, respectively, compared with the results of EIA and 8.7% and 98.0%, respectively, compared with the results of PCR for C. jejuni/C. coli. Most (71.6%) EIA-positive samples were positive by PCR for C. jejuni/C. coli, but 27.6% were positive for non-jejuni/coli Campylobacter species. Sequencing of 16S rRNA from 53 of these non-jejuni/coli Campylobacter samples showed that it most closely matched the 16S rRNA of C. hyointestinalis subsp. lawsonii (56%), C. troglodytis (33%), C. upsaliensis (7.7%), and C. jejuni/C. coli (2.6%). Campylobacter-negative stool spiked with each of the above-mentioned Campylobacter species revealed reactivity with EIA. PCR detection of Campylobacter species was strongly associated with diarrhea in Peru (odds ratio [OR] = 3.66, P < 0.001) but not in Tanzania (OR = 1.56, P = 0.24) or Bangladesh (OR = 1.13, P = 0.75). According to PCR, Campylobacter jejuni/C. coli infections represented less than half of all infections with Campylobacter species. In sum, in infants in developing country settings, the ProSpecT EIA and PCR for Campylobacter reveal extremely high rates of positivity. We propose the use of PCR because it retains high sensitivity, can ascertain burden, and can distinguish between Campylobacter infections at the species level.