Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Chemosphere ; 355: 141859, 2024 May.
Article En | MEDLINE | ID: mdl-38561161

To promptly and simply create highly crystalline S/C co-doped TiO2 (SC-TiO2) photocatalysts at room temperature and atmospheric pressure, we suggest a novel plasma-assisted sol-gel synthesis method. This method is a simultaneous synthetic process, in which an underwater plasma undergoes continuous reactions to generate high-energy atomic and molecular species that enable TiO2 to achieve crystallinity, a large surface area, and a heterogeneous structure within a few minutes. In particular, it was demonstrated that the heterogeneously structured TiO2 was formed by doping that sulfur and carbon replace O or Ti atoms in the TiO2 lattice depending on the composition of the synthesis solution during underwater plasma treatment. The resultant SC-TiO2 photocatalysts had narrowed bandgap energies and extended optical absorption scope into the visible range by inducing the intermediate states within bandgap due to generation of oxygen vacancies on the surface of TiO2 through synthesis, crystallization, and doping. Correspondingly, SC-TiO2 showed a significant degradation efficiency ([k] = 6.91 h-1) of tetracycline (TC, antibiotics) under solar light irradiation, up to approximately 4 times higher compared to commercial TiO2 ([k] = 1.68 h-1), resulting in great water purification. Therefore, we anticipate that this underwater discharge plasma system will prove to be an advantageous technique for producing heterostructural TiO2 photocatalysts with superior photocatalytic efficiency for environmental applications.


Carbon , Light , Carbon/chemistry , Anti-Bacterial Agents , Tetracycline , Sulfur , Titanium/chemistry , Catalysis
2.
Chemosphere ; 287(Pt 3): 132266, 2022 Jan.
Article En | MEDLINE | ID: mdl-34543898

Here we show an innovative way to effectively scavenge highly mobile radioiodide and to dramatically reduce its waste volume through a spontaneous phase transformation. Under an anaerobic condition, as metallic copper (II) was favorably associated with bicarbonate (HCO3-) in solution, a cupriferous carbonate compound (malachite) quickly formed, which was redox-sensitive and transformable to a compact crystal of CuI (marshite). The formation of CuI crystal was principally led by the spontaneous Cu-I redox reaction centering around the copper phase over the presence of sulfate (SO42-). The completely transformed CuI crystal was poorly soluble in water and grew to large microcrystals (∼µm) via a remarkable selectivity for I-. Interestingly, this redox-induced iodide crystallization was rather promoted over the existence of anionic competitors (e.g., HCO3- and SO42-), which usually exist in wastewater and natural water. Unlike the conventional methods, these competing anions positively behaved in our system by supporting that the initial malachite was more apt to be reactive to largely attract highly mobile I-. Under practical environments with various anions, such a selective I- uptake and fixation within a compact crystalline space will be a promising way to effectively remove I- in a great capacity.


Copper , Iodides , Crystallization , Oxidation-Reduction , Sulfates
3.
Chemosphere ; 287(Pt 2): 132204, 2022 Jan.
Article En | MEDLINE | ID: mdl-34826909

We identified optimal conditions for the disposal of high concentration of organic contaminants within a short time using a hybrid advanced oxidation process (AOP) combining various oxidizing agents. Plasma-treated water (PTW) containing many active species, that play dominant roles in the degradation of organic substances like hydroxyl radicals, atomic oxygen, ozone, and hydrogen peroxide, was used in this study as a strategy to improve degradation performance without the use of expensive chemical reagents like hydrogen peroxide. In particular, the optimal decomposition conditions using PTW, which were combined with 10 mg/h ozone, 2 g/L iron oxide, and 4 W UV light, demonstrated excellent removal abilities of a high concentration of reactive black 5 (RB5; 100 mg/L, >99%, [k] = 4.15 h-1) and tetracycline (TC; 10 mg/L, >96.5%, [k] = 3.35 h-1) for 25 min, approximately 1.5 times higher than that without PTW (RB5; 100 mg/L, 94%, [k] = 2.80 h-1). These results confirmed that the production of strong reactive hydroxyl radicals from the decomposition process, as well as various reactive species included in PTW efficiently attacked pollutant substances, resulting in a higher removal rate. This suggests that a water treatment system with this optimal condition based on complex AOP systems using PTW could be useful in critical environmental and biomedical applications.


Water Pollutants, Chemical , Water Purification , Hydrogen Peroxide , Oxidation-Reduction , Ultraviolet Rays , Waste Disposal, Fluid , Water Pollutants, Chemical/analysis
4.
Mater Sci Eng C Mater Biol Appl ; 109: 110500, 2020 Apr.
Article En | MEDLINE | ID: mdl-32228981

In this study, we aimed to demonstrate the feasibility of the application of biocompatible liquid type fluorescent carbon nanodots (C-paints) to microalgae by improving microalgae productivity. C-paints were prepared by a simple process of ultrasound irradiation using polyethylene glycol (PEG) as a passivation agent. The resulting C-paints exhibited a carbonyl-rich surface with good uniformity of particle size, excellent water solubility, photo-stability, fluorescence efficiency, and good biocompatibility (<10.0 mg mL-1 of C-paints concentration). In the practical application of C-paints to microalgae culture, the most effective and optimized condition leading to growth promoting effect was observed at a C-paints concentration of 1.0 mg mL-1 (>20% higher than the control cell content). A C-paints concentration of 1-10.0 mg mL-1 induced an approximately >1.8 times higher astaxanthin content than the control cells. The high light delivery effect of non-cytotoxic C-paints was applied as a stress condition for H. pluvialis growth and was found to play a major role in enhancing productivity. Notably, the results from this study are an essential approach to improve astaxanthin production, which can be used in various applications because of its therapeutic effects such as cancer prevention, anti-inflammation, immune stimulation, and treatment of muscle-soreness.


Antioxidants/chemistry , Carbon/chemistry , Animals , Humans , Microalgae/drug effects , Photoelectron Spectroscopy , Spectroscopy, Fourier Transform Infrared , Xanthophylls/chemistry , Xanthophylls/pharmacology
5.
J Hazard Mater ; 388: 122048, 2020 04 15.
Article En | MEDLINE | ID: mdl-31955026

Sulfur-modified pine-needle biochar (BC-S) was produced for the removal of Hg(II) in aqueous media via post-pyrolysis S stream exposure. Fourier-transform infrared spectroscopy, elemental analysis, and X-ray photoelectron spectroscopy confirmed the addition of S(0) groups on the surface of BC-S. Hg(II) adsorption on BC-S was best described by the Freundlich isotherm with a KF of 21.0 mg L g-1 and a pseudo-second-order adsorption kinetics model with a rate of 0.35 g mg-1 min-1. Hg(II) removal on BC-S was found to be an endothermic process that relied on C-Hg and S-Hg interactions rather than reduction by S(0) groups. The adsorption increased with increasing solution pH and decreased with increasing dissolved organic matter concentration, but was unaffected by increasing salt concentrations. BC-S showed a maximum of 3 % S leaching in aqueous media after 28-d exposure time, and exposure to aqueous media did not convert Hg(II) to elemental Hg. Overall, BC-S exhibited superior Hg(II) removal performance over unmodified BC, thus having potential applications in natural water and wastewater treatment with no significant threat of secondary pollution.


Charcoal/chemistry , Mercury/chemistry , Pinus , Plant Leaves , Sulfur/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Adsorption
6.
Chemosphere ; 238: 124656, 2020 Jan.
Article En | MEDLINE | ID: mdl-31472345

A composite sorbent for the simultaneous removal of both Hg2+ and SeO32- from aqueous media was produced from the solvothermal synthesis of a zirconium metal organic framework, UiO-66, in the presence of activated carbon. The composite sorbent has a large surface area of 1051 m2 g-1 with crystalized porous structures and has strong thermal stability up to 600 °C. The contaminant uptake of the sorbent follows a Langmuir adsorption isotherm with maximum sorption capacity of 205 mg g-1 and 168 mg g-1 for Hg2+ and SeO32-, respectively. Scanning electron microscopy-energy dispersive spectroscopy results show that the Se regions overlap exclusively with Zr-rich regions suggesting that SeO32- adsorption depends entirely on the exposed UiO-66 surface. In addition, X-ray photoelectron spectroscopy spectra of Se 3d and Hg 4f showed the association of SeO32- and Hg2+ on the UiO-66 and carbon surfaces, respectively. The sorbent could facilitate the development of a single process for the simultaneous removal of cationic Hg and anionic Se as well as other similar ionic metals with opposite charges from aqueous media.


Adsorption , Charcoal/chemistry , Metal-Organic Frameworks/chemistry , Metals/isolation & purification , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Anions , Cations , Mercury/chemistry , Mercury/isolation & purification , Selenium Oxides/isolation & purification , Water Pollutants, Chemical/chemistry , Zirconium/chemistry
7.
J Hazard Mater ; 358: 222-233, 2018 Sep 15.
Article En | MEDLINE | ID: mdl-29990810

In this paper, it is first reported that gray hydrogenated TiO2 sphere photocatalysts (H-TiO2) with high reactivity to solar light are mass produced within a few minutes using an underwater discharge plasma modified sol-gel method at room temperature and atmospheric pressure. This plasma modified system is an easy one-step in-situ synthetic process and the crystallinity, hydrogenation, and spherical structure of H-TiO2 are achieved by the synergy effect between the continuous reaction of highly energetic atomic and molecular species generated from the underwater plasma and surface tension of water. The resultant H-TiO2 demonstrated high anatase/rutile bicrystallinity and extended optical absorption spectrum from the ultraviolet (UV) to visible range. Furthermore, various defects including oxygen vacancies and hydroxyl species on the TiO2 surface permitted the enhancement of the photocatalytic performance. It was demonstrated that H-TiO2 photocatalysts showed significant degradation efficiencies for reactive black 5 (RB 5), rhodamine B (Rho B), and phenol (Ph) under solar light irradiation, up to approximately 5 times higher than that of commercial anatase TiO2 (C-TiO2), which resulted in good water purification. Notably, it was also possible to cultivate HepG2 cells using such well-purified water (to degrees up to 76%), with minimal cytotoxicity. Considering all these results, we believe that this novel plasma technology is promising for important environmental applications.

8.
J Hazard Mater ; 354: 283-292, 2018 07 15.
Article En | MEDLINE | ID: mdl-29778038

In this study, hierarchically three-dimensional (3D) nanotubular sea urchin-shaped iron oxide nanostructures (3D-Fe2O3) were synthesized by a facile and rapid ultrasound irradiation method. Additives, templates, inert gas atmosphere, pH regulation, and other complicated procedures were not required. Dense 3D-Fe2O3 with a relatively large Brunauer-Emmett-Teller (BET) surface area of 129.4 m2/g was synthesized within 23 min, and the BET surface area was further improved to 282.7 m2/g by a post heat-treatment process. In addition, this post processing led to phase changes from maghemite (γ phase) to hematite (α phase) Fe2O3. Subsequent characterization suggested that the growth mechanism of the 3D-Fe2O3 follows self-assembly and oriented attachment. The prepared 3D-Fe2O3 was applied to wastewater purification. Ultrasound-irradiated 3D-Fe2O3 can eliminate a As(V) and Cr(VI) from water with 25 times faster removal rate by using a one third smaller amount than commercial α-Fe2O3. This was attributed to the inter-particle pores and relatively positively charged surface of the nanostructure. In addition, post heat treatment on ultrasound-irradiated 3D-Fe2O3 significantly influenced the photocatalytic degradation of methylene blue and phenol, with a 25 times higher removal efficiency than that of commercial α-Fe2O3, because of both high BET surface area and good crystallization of the prepared samples.

9.
Nanoscale ; 9(26): 9210-9217, 2017 Jul 06.
Article En | MEDLINE | ID: mdl-28650486

Multifunctional carbon-based nanodots (C-dots) are synthesized using atmospheric plasma treatments involving reactive gases (oxygen and nitrogen). Surface design was achieved through one-step plasma treatment of C-dots (AC-paints) from polyethylene glycol used as a precursor. These AC-paints show high fluorescence, low cytotoxicity and excellent cellular imaging capability. They exhibit bright fluorescence with a quantum yield twice of traditional C-dots. The cytotoxicity of AC-paints was tested on BEAS2B, THLE2, A549 and hep3B cell lines. The in vivo experiments further demonstrated the biocompatibility of AC-paints using zebrafish as a model, and imaging tests demonstrated that the AC-paints can be used as bio-labels (at a concentration of <5 mg mL-1). Particularly, the oxygen plasma-treated AC-paints (AC-paints-O) show antibacterial effects due to increased levels of reactive oxygen species (ROS) in AC-paints (at a concentration of >1 mg mL-1). AC-paints can effectively inhibit the growth of Escherichia coli (E. coli) and Acinetobacter baumannii (A. baumannii). Such remarkable performance of the AC-paints has important applications in the biomedical field and environmental systems.


Carbon/chemistry , Fluorescence , Plasma Gases , Quantum Dots/chemistry , Acinetobacter baumannii/drug effects , Animals , Anti-Bacterial Agents/chemistry , Cell Line, Tumor , Escherichia coli/drug effects , Humans , Materials Testing , Polyethylene Glycols , Reactive Oxygen Species/metabolism , Zebrafish
10.
Ecotoxicol Environ Saf ; 137: 103-112, 2017 Mar.
Article En | MEDLINE | ID: mdl-27915140

Two zinc-aminoclays [ZnACs] with functionalized primary amines [(-CH2)3NH2] were prepared by a simple sol-gel reaction using cationic metal precursors of ZnCl2 and Zn(NO3)2 with 3-aminopropyl triethoxysilane [APTES] under ambient conditions. Due to the facile interaction of heavy metals with primary amine sites and Zn-related intrinsic antimicrobial activity, toxicity assays of ZnACs nanoparticles (NPs) prior to their environmental and human-health applications are essential. However, such reports remain rare. Thus, in the present study, a cell viability assay of in-vitro HeLa cells comparing ZnCl2, Zn(NO3)2 salts, and ZnO (~50nm average diameter) NPs was performed. Interestingly, compared with the ZnCl2, and Zn(NO3)2 salts, and ZnO NPs (18.73/18.12/51.49µg/mL and 18.12/15.19/46.10µg/mL of IC50 values for 24 and 48h), the two ZnACs NPs exhibited the highest toxicity (IC50 values of 21.18/18.36µg/mL and 18.37/17.09µg/mL for 24 and 48h, respectively), whose concentrations were calculated on Zn elemental composition. This might be due to the enhanced bioavailability and uptake into cells of ZnAC NPs themselves and their positively charged hydrophilicity by reactive oxygen species (ROS) generation, particularly as ZnACs exist in cationic NP's form, not in released Zn2+ ionic form (i.e., dissolved nanometal). However, in an in-vivo embryotoxicity assay in zebrafish, ZnACs and ZnO NPs showed toxic effects at 50-100µg/mL (corresponding to 37.88-75.76 of Zn wt% µg/mL). The hatching rate (%) of zebrafish was lowest for the ZnO NPs, particularly where ZnAC-[(NO3)2] is slightly more toxic than ZnAC-[Cl2]. These results are all very pertinent to the issue of ZnACs' potential applications in the environmental and biomedical fields.


Embryo, Nonmammalian/drug effects , Metal Nanoparticles/toxicity , Zebrafish/embryology , Zinc Compounds/toxicity , Zinc/toxicity , Animals , Cell Survival/drug effects , HeLa Cells , Humans , Metal Nanoparticles/chemistry , Propylamines/chemistry , Propylamines/toxicity , Reactive Oxygen Species/metabolism , Silanes/chemistry , Silanes/toxicity , Toxicity Tests , Zinc/chemistry , Zinc Compounds/chemistry
11.
Sci Rep ; 6: 29683, 2016 07 13.
Article En | MEDLINE | ID: mdl-27406992

We report an effect involving hydrogen (H2)-plasma-treated nanoporous TiO2(H-TiO2) photocatalysts that improve photocatalytic performance under solar-light illumination. H-TiO2 photocatalysts were prepared by application of hydrogen plasma of assynthesized TiO2(a-TiO2) without annealing process. Compared with the a-TiO2, the H-TiO2 exhibited high anatase/brookite bicrystallinity and a porous structure. Our study demonstrated that H2 plasma is a simple strategy to fabricate H-TiO2 covering a large surface area that offers many active sites for the extension of the adsorption spectra from ultraviolet (UV) to visible range. Notably, the H-TiO2 showed strong ·OH free-radical generation on the TiO2 surface under both UV- and visible-light irradiation with a large responsive surface area, which enhanced photocatalytic efficiency. Under solar-light irradiation, the optimized H-TiO2 120(H2-plasma treatment time: 120 min) photocatalysts showed unprecedentedly excellent removal capability for phenol (Ph), reactive black 5(RB 5), rhodamine B (Rho B) and methylene blue (MB) - approximately four-times higher than those of the other photocatalysts (a-TiO2 and P25) - resulting in complete purification of the water. Such well-purified water (>90%) can utilize culturing of cervical cancer cells (HeLa), breast cancer cells (MCF-7), and keratinocyte cells (HaCaT) while showing minimal cytotoxicity. Significantly, H-TiO2 photocatalysts can be mass-produced and easily processed at room temperature. We believe this novel method can find important environmental and biomedical applications.

12.
Small ; 12(2): 214-9, 2016 Jan 13.
Article En | MEDLINE | ID: mdl-26584654

Recently, the appeal of 2D black phosphorus (BP) has been rising due to its unique optical and electronic properties with a tunable band gap (≈0.3-1.5 eV). While numerous research efforts have recently been devoted to nano- and optoelectronic applications of BP, no attention has been paid to promising medical applications. In this article, the preparation of BP-nanodots of a few nm to <20 nm with an average diameter of ≈10 nm and height of ≈8.7 nm is reported by a modified ultrasonication-assisted solution method. Stable formation of nontoxic phosphates and phosphonates from BP crystals with exposure in water or air is observed. As for the BP-nanodot crystals' stability (ionization and persistence of fluorescent intensity) in aqueous solution, after 10 d, ≈80% at 1.5 mg mL(-1) are degraded (i.e., ionized) in phosphate buffered saline. They showed no or little cytotoxic cell-viability effects in vitro involving blue- and green-fluorescence cell imaging. Thus, BP-nanodots can be considered a promising agent for drug delivery or cellular tracking systems.


Biomedical Technology/methods , Nanoparticles/chemistry , Phosphorus/chemistry , Animals , Biocompatible Materials/pharmacology , Cell Line , Cell Survival/drug effects , Fluorescence , Humans , Microscopy, Atomic Force , Optical Phenomena , Spectrum Analysis, Raman , X-Ray Diffraction
...