Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; 20(22): e2309823, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38109127

RESUMEN

Electrocatalysts with low Pt loading mass to achieve high current density (≥1 A cm-2) for hydrogen evolution reaction (HER) are still extremely challenging due to the limited intrinsic activity and weak stability of catalytic sites. The modulation of the electronic microenvironment of the support-Pt structure is crucial to enhance the intrinsic activity and stability of catalytic sites. Herein, an innovative titanium oxycarbide (TiVCO) solid solution with Ti vacancies (TiV) is proposed as support to anchor sub-nanoscale Pt atomic clusters (Pt ACs) and a stable "TiV-Pt ACs" structure is carefully designed. The electronic microenvironment of "TiV-Pt ACs" is indirectly optimized by an unsaturated C/O site near TiV. Thanks to this, novel "TiV-Pt ACs" structure (Pt@TiVCO) with low Pt loading mass (2.44 wt.%) exhibits excellent HER activity in acidic solution and the mass activity is more than ten times that of commercial 20% Pt/C at the overpotentials of 50 and 100 mV. Particularly, Pt@TiVCO shows amazing stability at high and fluctuating current density of 1-2 A cm-2 for 120 h. This work provides a novel and promising method to develop stable and low-loading Pt-based catalysts adapting to high current density.

2.
Proc Natl Acad Sci U S A ; 120(28): e2301780120, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37399420

RESUMEN

Nearly half of the elements in the periodic table are extracted, refined, or plated using electrodeposition in high-temperature melts. However, operando observations and tuning of the electrodeposition process during realistic electrolysis operations are extremely difficult due to severe reaction conditions and complicated electrolytic cell, which makes the improvement of the process very blind and inefficient. Here, we developed a multipurpose operando high-temperature electrochemical instrument that combines operando Raman microspectroscopy analysis, optical microscopy imaging, and a tunable magnetic field. Subsequently, the electrodeposition of Ti-which is a typical polyvalent metal and generally shows a very complex electrode process-was used to verify the stability of the instrument. The complex multistep cathodic process of Ti in the molten salt at 823 K was systematically analyzed by a multidimensional operando analysis strategy involving multiple experimental studies, theoretical calculations, etc. The regulatory effect and its corresponding scale-span mechanism of the magnetic field on the electrodeposition process of Ti were also elucidated, which would be inaccessible with existing experimental techniques and is significant for the real-time and rational optimization of the process. Overall, this work established a powerful and universal methodology for in-depth analysis of high-temperature electrochemistry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA