Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Adv Sci (Weinh) ; 11(4): e2305371, 2024 Jan.
Article En | MEDLINE | ID: mdl-38036423

Biohybrid robots have been developed for biomedical applications and industrial robotics. However, the biohybrid robots have limitations to be applied in neurodegenerative disease research due to the absence of a central nervous system. In addition, the organoids-on-a-chip has not yet been able to replicate the physiological function of muscle movement in the human motor system, which is essential for evaluating the accuracy of the drugs used for treating neurodegenerative diseases. Here, a human motor system-based biohybrid robot-on-a-chip composed of a brain organoid, multi-motor neuron spheroids, and muscle bundle on solid substrateis proposed to evaluate the drug effect on neurodegenerative diseases for the first time. The electrophysiological signals from the cerebral organoid induced the muscle bundle movement through motor neuron spheroids. To evaluate the drug effect on Parkinson's disease (PD), a patient-derived midbrain organoid is generated and incorporated into a biohybrid robot-on-a-chip. The drug effect on PD is successfully evaluated by measuring muscle bundle movement. The muscle bundle movement of PD patient-derived midbrain organoid-based biohybrid robot-on-a-chip is increased from 4.5 ± 0.99 µm to 18.67 ± 2.25 µm in response to levodopa. The proposed human motor system-based biohybrid robot-on-a-chip can serve as a standard biohybrid robot model for drug evaluation.


Neurodegenerative Diseases , Parkinson Disease , Robotics , Humans , Neurodegenerative Diseases/drug therapy , Drug Evaluation , Lab-On-A-Chip Devices
2.
Nano Converg ; 10(1): 8, 2023 Feb 10.
Article En | MEDLINE | ID: mdl-36763293

Despite the broadly applicable potential in the bioelectronics, organic/inorganic material-based bioelectronics have some limitations such as hard stiffness and low biocompatibility. To overcome these limitations, hydrogels capable of bridging the interface and connecting biological materials and electronics have been investigated for development of hydrogel bioelectronics. Although hydrogel bioelectronics have shown unique properties including flexibility and biocompatibility, there are still limitations in developing novel hydrogel bioelectronics using only hydrogels such as their low electrical conductivity and structural stability. As an alternative solution to address these issues, studies on the development of biohybrid hydrogels that incorporating nanomaterials into the hydrogels have been conducted for bioelectronic applications. Nanomaterials complement the shortcomings of hydrogels for bioelectronic applications, and provide new functionality in biohybrid hydrogel bioelectronics. In this review, we provide the recent studies on biohybrid hydrogels and their bioelectronic applications. Firstly, representative nanomaterials and hydrogels constituting biohybrid hydrogels are provided, and next, applications of biohybrid hydrogels in bioelectronics categorized in flexible/wearable bioelectronic devices, tissue engineering, and biorobotics are discussed with recent studies. In conclusion, we strongly believe that this review provides the latest knowledge and strategies on hydrogel bioelectronics through the combination of nanomaterials and hydrogels, and direction of future hydrogel bioelectronics.

...