Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Small ; : e2403103, 2024 May 22.
Article En | MEDLINE | ID: mdl-38778502

The optoelectronic synaptic transistors with various functions, broad spectral perception, and low power consumption are an urgent need for the development of advanced optical neural network systems. However, it remains a great challenge to realize the functional diversification of the systems on a single device. 2D van der Waals (vdW) materials can combine unique properties by stacking with each other to form heterojunctions, which may provide a strategy for solving this problem. Herein, an all-2D vdW heterojunction-based programmable optoelectronic synaptic transistor based on MoS2/Ta2NiS5 heterojunctions is demonstrated. The device implements reconfigurable, multilevel non-volatile memory (NVM) states through sequential modulation of multiple optical and electrical stimuli to achieve broadband (532-808 nm), energy-efficient (17.2 fJ), hetero-synaptic functionality in a bionic manner. The intrinsic working mechanisms of the photogating effect caused by band alignment and the interfacial trapping defect modulation induced by gate voltage are revealed by Kelvin-probe force microscopy (KPFM) measurements and carrier transport analysis. Overall, the (opto)electronic synaptic weight controllability for combined in-sensor and in-memory logic processors is realized by the heterojunction properties. The proposed findings facilitate the technical realization of generic all 2D hetero-synapses for future artificial vision systems, opto-logical systems, and Internet of Things (IoT) entities.

2.
Article En | MEDLINE | ID: mdl-38600687

Broadband photodetectors have drawn intensive attention owing to their wide application prospects in optical communication, imaging, astronomy, and so on. Two-dimensional transition-metal dichalcogenides (TMDs) are considered as highly potential candidates for photodetection applications, benefiting from their excellent photoelectric properties. However, most of the photodetectors based on TMDs suffer from low performance in the near-infrared (NIR) region due to the weak optical absorption efficiency near their absorption band edge, which severely constrains their usage for broadband optoelectronics. Here, by taking advantage of the high absorption coefficient and environment-friendly property of Ag2S quantum dots (QDs), the hybrid of multilayer MoSe2/Ag2S QDs is demonstrated with a high-performance broadband photodetection capability (532-1270 nm). The favorable energy band alignment of MoSe2/Ag2S QDs facilitates effective separation and collection of photogenerated carriers, and the heterostructure device exhibits significant enhancement of performance compared to the bare MoSe2 device. High responsivity, detectivity, and external quantum efficiency of 25.5 A/W, 1.45 × 1011 Jones, and 1070% are obtained at a low working voltage of 1 V under 980 nm illumination. The responsivity of the device can reach up to 1.2 A/W at 1270 nm wavelength, which is competitive to the commercial NIR photodetectors. Meanwhile, broadband imaging capability is demonstrated. Our work may open up a facile and eco-friendly approach to construct high-performance broadband photodetectors for next-generation compact optoelectronic applications.

3.
Nat Commun ; 15(1): 141, 2024 Jan 02.
Article En | MEDLINE | ID: mdl-38167874

Photogating effect is the dominant mechanism of most high-responsivity two-dimensional (2D) material photodetectors. However, the ultrahigh responsivities in those devices are intrinsically at the cost of very slow response speed. In this work, we report a WSe2/Ta2NiSe5 heterostructure detector whose photodetection gain and response speed can be enhanced simultaneously, overcoming the trade-off between responsivity and speed. We reveal that photogating-assisted tunneling synergistically allows photocarrier multiplication and carrier acceleration through tunneling under an electrical field. The photogating effect in our device features low-power consumption (in the order of nW) and shows a dependence on the polarization states of incident light, which can be further tuned by source-drain voltages, allowing for wavelength discrimination with just a two-electrode planar structure. Our findings offer more opportunities for the long-sought next-generation photodetectors with high responsivity, fast speed, polarization detection, and multi-color sensing, simultaneously.

4.
ACS Appl Mater Interfaces ; 14(21): 24648-24658, 2022 Jun 01.
Article En | MEDLINE | ID: mdl-35581001

There is an increasing need for multifunctional sensors that can detect radiation, biological activity, gas, etc. for efficient health monitoring, neurological medical devices, and human-machine interfaces in recent years. Herein, we demonstrated a multifunctional Sn-doped In2O3 nanocrystal (ITO NC) based device for ulyoutraviolet (UV)/infrared (IR) dual-band photodetection and light-activated efficient nitrogen dioxide (NO2) gas sensing at room temperature (RT). The effects of different surface ligands and annealing process of ITO NCs on their photodetection performance were investigated. The ITO NCs capped with 1,2-ethanedithiol (EDT) show a responsivity of 31.3/177.7 mA W-1 and normalized detectivity of ∼1 × 1010/109 cm Hz1/2 W-1 under UV/IR illumination at 375/2200 nm at RT. The potential of the ITO NCs sensors to monitor low concentrations of NO2 is activated by light illumination. The sensor has a higher response (4.2) to 1 ppm of NO2, shorter response/recovery time (156.8/554.2 s), and a lower detection limit (LOD) (219 ppb) under UV illumination compared within a dark environment. The LOD of the sensor is lower than the allowable exposure limit of NO2 specified in "Air Pollutant Limits" of the Occupational Safety and Health Administration (OSHA). Our work paves an alternative platform for the development of low-cost, integration-friendly multifunctional devices.

5.
Micromachines (Basel) ; 11(4)2020 Apr 21.
Article En | MEDLINE | ID: mdl-32326194

Real-time polymerase chain reaction (PCR) is the standard for nucleic acid detection and plays an important role in many fields. A new chip design is proposed in this study to avoid the use of expensive instruments for hydrophobic treatment of the surface, and a new injection method solves the issue of bubbles formed during the temperature cycle. We built a battery-powered real-time PCR device to follow polymerase chain reaction using fluorescence detection and developed an independently designed electromechanical control system and a fluorescence analysis software to control the temperature cycle, the photoelectric detection coupling, and the automatic analysis of the experimental data. The microchips and the temperature cycling system cost USD 100. All the elements of the device are available through open access, and there are no technical barriers. The simple structure and manipulation allows beginners to build instruments and perform PCR tests after only a short tutorial. The device is used for analysis of the amplification curve and the melting curve of multiple target genes to demonstrate that our instrument has the same accuracy and stability as a commercial instrument.

6.
ACS Omega ; 4(3): 4848-4855, 2019 Mar 31.
Article En | MEDLINE | ID: mdl-31459669

The development of form-stable phase-change materials (FSPCMs) with large latent heat, excellent thermal stability, and recyclability is essential for their practical applications in thermal or solar energy saving. In this paper, we first report the FSPCM composites with exceptional latent heat by employment of sugar alcohol, in this case erythritol (Ery) and mannitol (Man), as organic phase-change materials (PCMs) and carbonized kapok fiber (KKf) with a high Brunauer-Emmett-Teller surface area of up to 3396 m2 g-1 as porous supporting materials. The unique hollow tubelike structure of KKf makes it possible to load the organic PCMs inside and outside the KKf tubes, and a high load value of 93% was achieved. The carbonized KKf could not only endow itself robust thermal stability but also significantly decrease supercooling while enhancing the thermal conductivity of the PCM composites by over 130% compared with pure Ery and Man. Compared with these reported PCM composites for low and medium temperature usually having latent heat ranges from 150 to 258 J g-1, our PCM composites display exceptionally high latent heat ranging from 297 to 350 J g-1, owing to the inherent large latent heat of sugar alcohols. Notably, as a kind of natural plant fiber with abundant availability, the employment of kapok fiber as the supporting material via physical incorporation with sugar alcohols thus makes the approach simple, green, and cost-effective, which is of great technological significance for their real energy-saving applications owing to their high energy storage performance, high loading values, and enhanced thermal conductivity.

...