Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
J Med Chem ; 66(24): 16579-16596, 2023 12 28.
Article En | MEDLINE | ID: mdl-38069817

Arsenic trioxide (ATO) targets PML/RARα and leads to miraculous success in treating acute promyelocytic leukemia. Notably, ATO also targets p53, the most frequently mutated protein in cancers, through a similar binding mechanism. However, p53-targeting ATO trials are challenging due to the poor cellular uptake and cancer selectivity of ATO. Here, we analyzed the structure-activity relationship of arsenicals and rationally developed a novel arsenical (designated AcGlcAs) by conjugating arsenic to sulfur atoms and tetraacetyl-ß-d-thioglucose. AcGlcAs exhibited remarkable cellular uptake through a thiol-mediated pathway (maximally 127-fold higher than ATO), thereby potently targeting PML/RARα and mutant p53. Among the 55 tested cell lines, AcGlcAs preferentially killed cancer lines rather than normal lines. In preclinical studies, AcGlcAs significantly extended the survival of mice bearing a xenograft tumor with p53 mutation while showing high plasma stability and oral bioavailability. Thus, AcGlcAs is a potential clinical candidate for precisely treating numerous p53-mutated cancers.


Antineoplastic Agents , Arsenicals , Leukemia, Promyelocytic, Acute , Humans , Mice , Animals , Tumor Suppressor Protein p53/metabolism , Oxides/pharmacology , Oxides/metabolism , Apoptosis , Arsenic Trioxide/pharmacology , Arsenic Trioxide/metabolism , Arsenic Trioxide/therapeutic use , Arsenicals/pharmacology , Arsenicals/therapeutic use , Leukemia, Promyelocytic, Acute/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
2.
Acta Pharm Sin B ; 12(10): 3783-3821, 2022 Oct.
Article En | MEDLINE | ID: mdl-36213536

Carbohydrates are fundamental molecules involved in nearly all aspects of lives, such as being involved in formating the genetic and energy materials, supporting the structure of organisms, constituting invasion and host defense systems, and forming antibiotics secondary metabolites. The naturally occurring carbohydrates and their derivatives have been extensively studied as therapeutic agents for the treatment of various diseases. During 2000 to 2021, totally 54 carbohydrate-based drugs which contain carbohydrate moities as the major structural units have been approved as drugs or diagnostic agents. Here we provide a comprehensive review on the chemical structures, activities, and clinical trial results of these carbohydrate-based drugs, which are categorized by their indications into antiviral drugs, antibacterial/antiparasitic drugs, anticancer drugs, antidiabetics drugs, cardiovascular drugs, nervous system drugs, and other agents.

3.
Biomolecules ; 12(10)2022 Oct 13.
Article En | MEDLINE | ID: mdl-36291679

Alzheimer's disease (AD) is the most common type of dementia and is a serious disruption to normal life. Monoamine oxidase-B (MAO-B) is an important target for the treatment of AD. In this study, machine learning approaches were applied to investigate the identification model of MAO-B inhibitors. The results showed that the identification model for MAO-B inhibitors with K-nearest neighbor(KNN) algorithm had a prediction accuracy of 94.1% and 88.0% for the 10-fold cross-validation test and the independent test set, respectively. Secondly, a quantitative activity prediction model for MAO-B was investigated with the Topomer CoMFA model. Two separate cutting mode approaches were used to predict the activity of MAO-B inhibitors. The results showed that the cut model with q2 = 0.612 (cross-validated correlation coefficient) and r2 = 0.824 (non-cross-validated correlation coefficient) were determined for the training and test sets, respectively. In addition, molecular docking was employed to analyze the interaction between MAO-B and inhibitors. Finally, based on our proposed prediction model, 1-(4-hydroxyphenyl)-3-(2,4,6-trimethoxyphenyl)propan-1-one (LB) was predicted as a potential MAO-B inhibitor and was validated by a multi-spectroscopic approach including fluorescence spectra and ultraviolet spectrophotometry.


Alzheimer Disease , Monoamine Oxidase Inhibitors , Humans , Molecular Docking Simulation , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase Inhibitors/chemistry , Monoamine Oxidase/chemistry , Spectrum Analysis , Alzheimer Disease/drug therapy , Machine Learning
4.
Adv Sci (Weinh) ; 9(31): e2203173, 2022 11.
Article En | MEDLINE | ID: mdl-36031407

A recently developed synthetic retinoid abrogates proliferation and induces apoptosis of drug-resistant malignant-cancer-stem-cell-like cells. However, the underlying mechanisms of how the synthetic retinoid induces cancer-stem-cell-like cell tumor-repopulating cell (TRC) apoptosis are elusive. Here, it is shown that although the retinoid and conventional anticancer drugs cisplatin, all-trans retinoic acid, and tazarotene all inhibit cytoskeletal tension and decondense chromatin prior to inducing TRC apoptosis, half-maximal inhibitory concentration of the retinoid is 20-fold lower than those anticancer drugs. The synthetic retinoid induces retinoic acid receptor gamma (RARγ) translocation from the nucleus to the cytoplasm, leading to reduced RARγ binding to Cdc42 promoter and Cdc42 downregulation, which decreases filamentous-actin (F-actin) and inhibits cytoskeletal tension. Elevating F-actin or upregulating histone 3 lysine 9 trimethylation decreases retinoid-induced DNA damage and apoptosis of TRCs. The combinatorial treatment with a chromatin decondensation molecule and the retinoid inhibits tumor metastasis in mice more effectively than the synthetic retinoid alone. These findings suggest a strategy of lowering cell tension and decondensing chromatin to enhance DNA damage to abrogate metastasis of cancer-stem-cell-like cells with high efficacy.


Antineoplastic Agents , Neoplasms , Neoplastic Stem Cells , Retinoids , Synthetic Drugs , Animals , Mice , Actins , Antineoplastic Agents/pharmacology , Chromatin , Neoplastic Stem Cells/drug effects , Retinoids/pharmacology , Drug Resistance, Neoplasm
5.
Innovation (Camb) ; 2(2): 100103, 2021 May 28.
Article En | MEDLINE | ID: mdl-34557754

The discovery that mutations in the EGFR gene are detected in up to 50% of lung adenocarcinoma patients, along with the development of highly efficacious epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), has revolutionized the treatment of this frequently occurring lung malignancy. Indeed, the clinical success of these TKIs constitutes a critical milestone in targeted cancer therapy. Three generations of EGFR-TKIs are currently approved for the treatment of EGFR mutation-positive non-small cell lung cancer (NSCLC). The first-generation TKIs include erlotinib, gefitinib, lapatinib, and icotinib; the second-generation ErbB family blockers include afatinib, neratinib, and dacomitinib; whereas osimertinib, approved by the FDA on 2015, is a third-generation TKI targeting EGFR harboring specific mutations. Compared with the first- and second-generation TKIs, third-generation EGFR inhibitors display a significant advantage in terms of patient survival. For example, the median overall survival in NSCLC patients receiving osimertinib reached 38.6 months. Unfortunately, however, like other targeted therapies, new EGFR mutations, as well as additional drug-resistance mechanisms emerge rapidly after treatment, posing formidable obstacles to cancer therapeutics aimed at surmounting this chemoresistance. In this review, we summarize the molecular mechanisms underlying resistance to third-generation EGFR inhibitors and the ongoing efforts to address and overcome this chemoresistance. We also discuss the current status of fourth-generation EGFR inhibitors, which are of great value in overcoming resistance to EGFR inhibitors that appear to have greater therapeutic benefits in the clinic.

6.
J Exp Clin Cancer Res ; 40(1): 280, 2021 Sep 04.
Article En | MEDLINE | ID: mdl-34479623

BACKGROUND: Recurrent hepatocellular carcinoma (HCC) shows strong resistance to sorafenib, and the tumor-repopulating cells (TRCs) with cancer stem cell-like properties are considered a driver for its high recurrent rate and drug resistance. METHODS: Suppression of TRCs may thus be an effective therapeutic strategy for treating this fatal disease. We evaluated the pharmacology and mechanism of sulfarotene, a new type of synthetic retinoid, on the cancer stem cell-like properties of HCC TRCs, and assessed its preclinical efficacy in models of HCC patient-derived xenografts (PDXs). RESULTS: Sulfarotene selectively inhibited the growth of HCC TRCs in vitro and significantly deterred TRC-mediated tumor formation and lung metastasis in vivo without apparent toxicity, with an IC50 superior to that of acyclic retinoid and sorafenib, to which the recurrent HCC exhibits significant resistance at advanced stage. Sulfarotene promoted the expression and activation of RARα, which down-regulated SOS2, a key signal mediator associated with RAS activation and signal transduction involved in multiple downstream pathways. Moreover, sulfarotene selectively inhibited tumorigenesis of HCC PDXs with high expression for SOS2. CONCLUSIONS: Our study identified sulfarotene as a selective inhibitor for the TRCs of HCC, which targets a novel RARα-SOS2-RAS signal nexus, shedding light on a new, promising strategy of target therapy for advanced liver cancer.


Antineoplastic Agents/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Retinoids/therapeutic use , Son of Sevenless Proteins/drug effects , Sorafenib/therapeutic use , Animals , Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Humans , Liver Neoplasms/pathology , Mice , Retinoids/pharmacology , Signal Transduction , Sorafenib/pharmacology
7.
Drug Resist Updat ; 49: 100671, 2020 03.
Article En | MEDLINE | ID: mdl-31841768

Cancer continues to be a leading threat to human health and life. Resistance to anti-cancer drugs is a major impediment towards efficacious cancer treatment. p53 mutations play an important role in cancer cell resistance to chemotherapeutic drugs. The frequency of p53-based chemoresistance is highly associated with the chemical properties of the anticancer drug, the cellular drug target, the biological function being blocked by the chemotherapeutic agent, the genomic instability and alterations of the tumor, as well as its differentiation state. The p53-based molecular mechanisms of anticancer drug resistance are insufficiently understood. With a clear focus on the role of p53 mutations in anticancer drug resistance, the present article reviews the biological structure and function of p53, its regulatory mechanisms, as well as the molecular mechanisms underlying p53 mutation-dependent chemoresistance and possible modalities to surmount this drug resistance. We specifically discuss the roles of p53 in the development of chemoresistance to classical cytotoxic agents including for example cisplatin, doxorubicin, 5-fluorouracil, temozolomide, and paclitaxel. It is expected that the clinical manifestation of drug resistance can be integrated with data obtained from molecular multi-omics analyses addressing the alterations provoked by p53-driven resistance to discover the altered networks in these drug resistant tumors. Thus, novel drugs targeting mutant p53 or mutant p53-based dysregulated pathways, could be developed that may overcome well-defined mutant p53-mediated chemoresistance. Thus, an in-depth understanding of the p53-driven resistance modalities could facilitate the development of novel targeted antitumor drugs and strategies aimed at enhancing the efficacy of current cancer therapeutics.


Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Tumor Suppressor Protein p53/genetics , Animals , Drug Development , Drug Resistance, Neoplasm/genetics , Humans , Mutation , Neoplasms/genetics , Neoplasms/pathology
8.
J Oncol ; 2019: 7252013, 2019.
Article En | MEDLINE | ID: mdl-31929798

MicroRNA-221/222 (miRNA-221/222, miR-221/222) is a noncoding microRNA which is widely distributed in eukaryotic organisms and deeply involved in the posttranscriptional regulation of gene expressions. According to recent studies, abnormal expressions of miR-221/222 are closely related to the occurrence and development of various kinds of malignant tumors. The role of miR-221/222 in tumor development and their potential molecular mechanism in various cancers, including liver cancer, colorectal cancer, cervical cancer, ovarian cancer, and endometrial carcinoma, are summarized and reviewed in this paper. Moreover, the potential translational biomarker role of abnormal miR-221/222 level in tumor or blood circulation for tumor diagnosis is also discussed.

9.
Nat Commun ; 9(1): 1406, 2018 04 11.
Article En | MEDLINE | ID: mdl-29643385

Developing novel drugs that can abrogate the growth and metastasis of malignant tumors is a major challenge for cancer researchers. Here we describe a novel synthetic retinoid, namely WYC-209, which inhibits proliferation of malignant murine melanoma tumor-repopulating cells (TRCs), known to resist conventional drug treatment, with an IC50 of 0.19 µM in a dose-dependent manner. WYC-209 also inhibits proliferation of TRCs of human melanoma, lung cancer, ovarian cancer, and breast cancer in culture. Interestingly, the treated TRCs fail to resume growth even after the drug washout. Importantly, the molecule abrogates 87.5% of lung metastases of melanoma TRCs in immune-competent wild-type C57BL/6 mice at 0.22 mg kg-1 without showing apparent toxicity. Pretreating the melanoma TRCs with retinoic acid receptor (RAR) antagonists or with RAR siRNAs blocks or reduces the inhibitory effect of the molecule, suggesting that the target of the molecule is RAR. WYC-209 induces TRC apoptosis and pretreating the TRCs with caspase 3 inhibitor or depleting caspase 3 with siRNAs substantially rescues growth of TRCs from WYC-209 inhibition, suggesting that WYC-209 induces TRCs apoptosis primarily via the caspase 3 pathway. Our findings demonstrate the promise of the new retinoid WYC-209 in treating malignant melanoma tumors with high efficacy and little toxicity.


Antineoplastic Agents/pharmacology , Gene Expression Regulation, Neoplastic , Lung Neoplasms/drug therapy , Melanoma/drug therapy , Neoplasms, Experimental/drug therapy , Retinoids/pharmacology , Skin Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , Apoptosis/genetics , Caspase 3/genetics , Caspase 3/metabolism , Cell Line, Tumor , Female , Humans , Inhibitory Concentration 50 , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Melanoma/genetics , Melanoma/metabolism , Melanoma/pathology , Mice , Mice, Inbred C57BL , Neoplasms, Experimental/genetics , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Nicotinic Acids/pharmacology , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Receptors, Retinoic Acid/antagonists & inhibitors , Receptors, Retinoic Acid/genetics , Receptors, Retinoic Acid/metabolism , Retinoids/chemical synthesis , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Tretinoin/pharmacology
...