Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39126108

RESUMEN

Damage to the central nervous system (CNS) often leads to irreversible neurological deficits, and there are currently few effective treatments available. However, recent advancements in regenerative medicine have identified CNS organoids as promising therapeutic options for addressing CNS injuries. These organoids, composed of various neurons and supporting cells, have shown potential for direct repair at injury sites. CNS organoids resemble the structure and function of actual brain tissue, which allows them to adapt and function well within the physiological environment when transplanted into injury sites. Research findings suggest that CNS organoids can replace damaged neurons, form new neural connections, and promote neural recovery. This review highlights the emerging benefits, evaluates preclinical transplantation outcomes, and explores future strategies for optimizing neuroregeneration using CNS organoids. With continued research and technological advancements, these organoids could provide new hope for patients suffering from neurological deficits.


Asunto(s)
Sistema Nervioso Central , Organoides , Humanos , Organoides/citología , Organoides/trasplante , Regeneración Nerviosa , Animales , Neuronas/citología , Neuronas/fisiología , Medicina Regenerativa/métodos
2.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39125746

RESUMEN

Osteoporotic vertebral compression fractures (OVCFs) are the most prevalent fractures among patients with osteoporosis, leading to severe pain, deformities, and even death. This study explored the use of ectopic embryonic calvaria derived mesenchymal stem cells (EE-cMSCs), which are known for their superior differentiation and proliferation capabilities, as a potential treatment for bone regeneration in OVCFs. We evaluated the impact of EE-cMSCs on osteoclastogenesis in a RAW264.7 cell environment, which was induced by the receptor activator of nuclear factor kappa-beta ligand (RANKL), using cytochemical staining and quantitative real-time PCR. The osteogenic potential of EE-cMSCs was evaluated under various hydrogel conditions. An osteoporotic vertebral body bone defect model was established by inducing osteoporosis in rats through bilateral ovariectomy and creating defects in their coccygeal vertebral bodies. The effects of EE-cMSCs were examined using micro-computed tomography (µCT) and histology, including immunohistochemical analyses. In vitro, EE-cMSCs inhibited osteoclast differentiation and promoted osteogenesis in a 3D cell culture environment using fibrin hydrogel. Moreover, µCT and histological staining demonstrated increased new bone formation in the group treated with EE-cMSCs and fibrin. Immunostaining showed reduced osteoclast activity and bone resorption, alongside increased angiogenesis. Thus, EE-cMSCs can effectively promote bone regeneration and may represent a promising therapeutic approach for treating OVCFs.


Asunto(s)
Diferenciación Celular , Modelos Animales de Enfermedad , Células Madre Mesenquimatosas , Osteogénesis , Osteoporosis , Cráneo , Animales , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Ratas , Cráneo/patología , Ratones , Osteoporosis/patología , Osteoporosis/metabolismo , Osteoporosis/terapia , Femenino , Células RAW 264.7 , Osteoclastos/metabolismo , Regeneración Ósea , Ratas Sprague-Dawley , Trasplante de Células Madre Mesenquimatosas/métodos , Cuerpo Vertebral/metabolismo , Microtomografía por Rayos X , Fracturas Osteoporóticas/terapia , Fracturas Osteoporóticas/metabolismo , Fracturas Osteoporóticas/patología
3.
Eur Spine J ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38987513

RESUMEN

BACKGROUND: Clinical prediction models (CPM), such as the SCOAP-CERTAIN tool, can be utilized to enhance decision-making for lumbar spinal fusion surgery by providing quantitative estimates of outcomes, aiding surgeons in assessing potential benefits and risks for each individual patient. External validation is crucial in CPM to assess generalizability beyond the initial dataset. This ensures performance in diverse populations, reliability and real-world applicability of the results. Therefore, we externally validated the tool for predictability of improvement in oswestry disability index (ODI), back and leg pain (BP, LP). METHODS: Prospective and retrospective data from multicenter registry was obtained. As outcome measure minimum clinically important change was chosen for ODI with ≥ 15-point and ≥ 2-point reduction for numeric rating scales (NRS) for BP and LP 12 months after lumbar fusion for degenerative disease. We externally validate this tool by calculating discrimination and calibration metrics such as intercept, slope, Brier Score, expected/observed ratio, Hosmer-Lemeshow (HL), AUC, sensitivity and specificity. RESULTS: We included 1115 patients, average age 60.8 ± 12.5 years. For 12-month ODI, area-under-the-curve (AUC) was 0.70, the calibration intercept and slope were 1.01 and 0.84, respectively. For NRS BP, AUC was 0.72, with calibration intercept of 0.97 and slope of 0.87. For NRS LP, AUC was 0.70, with calibration intercept of 0.04 and slope of 0.72. Sensitivity ranged from 0.63 to 0.96, while specificity ranged from 0.15 to 0.68. Lack of fit was found for all three models based on HL testing. CONCLUSIONS: Utilizing data from a multinational registry, we externally validate the SCOAP-CERTAIN prediction tool. The model demonstrated fair discrimination and calibration of predicted probabilities, necessitating caution in applying it in clinical practice. We suggest that future CPMs focus on predicting longer-term prognosis for this patient population, emphasizing the significance of robust calibration and thorough reporting.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA