Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 15(4)2024 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-38674449

RESUMEN

The expression of Bacillus thuringiensis (Bt) toxins in transgenic cotton confers resistance to insect pests. However, it has been demonstrated that its effectiveness varies among cotton cultivars and different tissues. In this study, we evaluated the expression of Bt protein in 28 cotton cultivars and selected 7 cultivars that differed in Bt protein expression for transcriptome analysis. Based on their Bt protein expression levels, the selected cultivars were categorized into three groups: H (high Bt protein expression), M (moderate expression), and L (low expression). In total, 342, 318, and 965 differentially expressed genes were detected in the H vs. L, M vs. L, and H vs. M comparison groups, respectively. And three modules significantly associated with Bt protein expression were identified by weighted gene co-expression network analysis. Three hub genes were selected to verify their relationships with Bt protein expression using virus-induced gene silencing (VIGS). Silencing GhM_D11G1176, encoding an MYC transcription factor, was confirmed to significantly decrease the expression of Bt protein. The present findings contribute to an improved understanding of the mechanisms that influence Bt protein expression in transgenic cotton.


Asunto(s)
Bacillus thuringiensis , Regulación de la Expresión Génica de las Plantas , Gossypium , Plantas Modificadas Genéticamente , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis/genética , Proteínas Bacterianas/genética , Endotoxinas/genética , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Gossypium/genética , Gossypium/parasitología , Gossypium/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Transcriptoma
2.
BMC Plant Biol ; 24(1): 182, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38475753

RESUMEN

BACKGROUND: Cotton boll shedding is one of the main factors adversely affecting the cotton yield. During the cotton plant growth period, low light conditions can cause cotton bolls to fall off prematurely. In this study, we clarified the regulatory effects of low light intensity on cotton boll abscission by comprehensively analyzing the transcriptome and metabolome. RESULTS: When the fruiting branch leaves were shaded after pollination, all of the cotton bolls fell off within 5 days. Additionally, H2O2 accumulated during the formation of the abscission zone. Moreover, 10,172 differentially expressed genes (DEGs) and 81 differentially accumulated metabolites (DAMs) were identified. A KEGG pathway enrichment analysis revealed that the identified DEGs and DAMs were associated with plant hormone signal transduction and flavonoid biosynthesis pathways. The results of the transcriptome analysis suggested that the expression of ethylene (ETH) and abscisic acid (ABA) signaling-related genes was induced, which was in contrast to the decrease in the expression of most of the IAA signaling-related genes. A combined transcriptomics and metabolomics analysis revealed that flavonoids may help regulate plant organ abscission. A weighted gene co-expression network analysis detected two gene modules significantly related to abscission. The genes in these modules were mainly related to exosome, flavonoid biosynthesis, ubiquitin-mediated proteolysis, plant hormone signal transduction, photosynthesis, and cytoskeleton proteins. Furthermore, TIP1;1, UGT71C4, KMD3, TRFL6, REV, and FRA1 were identified as the hub genes in these two modules. CONCLUSIONS: In this study, we elucidated the mechanisms underlying cotton boll abscission induced by shading on the basis of comprehensive transcriptomics and metabolomics analyses of the boll abscission process. The study findings have clarified the molecular basis of cotton boll abscission under low light intensity, and suggested that H2O2, phytohormone, and flavonoid have the potential to affect the shedding process of cotton bolls under low light stress.


Asunto(s)
Reguladores del Crecimiento de las Plantas , Transcriptoma , Gossypium/genética , Peróxido de Hidrógeno/metabolismo , Perfilación de la Expresión Génica/métodos , Metaboloma , Flavonoides/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
Plant Sci ; 338: 111899, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37865208

RESUMEN

An exposure to extremely saline conditions can lead to significant oxidative damage in plants. Flavonoids, which are potent antioxidants, are critical for the scavenging of reactive oxygen species caused by abiotic stress. In the present study, the cotton F-box gene GhFB15 was isolated and characterized. The expression of GhFB15 was rapidly induced by salt as well as by exogenous hormones (ETH, MeJA, ABA, and GA). An analysis of subcellular localization revealed GhFB15 is mainly distributed in nuclei. Overexpression of GhFB15 adversely affected the salt tolerance of transgenic Arabidopsis plants as evidenced by decreased seed germination and seedling growth, whereas the silencing of GhFB15 improved the salt tolerance of cotton plants. Furthermore, we analyzed the gene expression profiles of VIGS-GhFB15 and TRV:00 plants. Many of the differentially expressed genes were associated with the flavonoid biosynthesis pathway. Moreover, lower flavonoid contents and higher levels of H2O2 and O2- were observed in the transgenic Arabidopsis plants. Conversely, the VIGS-GhFB15 cotton plants had relatively higher flavonoid contents, but lower H2O2 and O2- levels. These results suggest that GhFB15 negatively regulates salt tolerance, and silencing GhFB15 results in increased flavonoid accumulation and improved ROS scavenging.


Asunto(s)
Arabidopsis , Proteínas F-Box , Arabidopsis/metabolismo , Salinidad , Proteínas F-Box/genética , Peróxido de Hidrógeno/metabolismo , Plantas Modificadas Genéticamente/genética , Estrés Fisiológico/genética , Flavonoides/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Front Plant Sci ; 14: 1056662, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875607

RESUMEN

Carbon ion beam (CIB) irradiation is a powerful way to create mutations in animals, plants, and microbes. Research on the mutagenic effects and molecular mechanisms of radiation is an important and multidisciplinary issue. However, the effect of carbon ion radiation on cotton is uncertain. In this study, five different upland cotton varieties and five CIB doses were used to identify the suitable irradiation dose for cotton. Three mutagenized progeny cotton lines from the wild-type Ji172 were re-sequenced. The effect of half-lethal dose on mutation induction indicated that 200 Gy with LETmax of 226.9 KeV/µm was the most effective heavy-ion dose for upland cotton and a total of 2,959-4,049 single-base substitutions (SBSs) and 610-947 insertion-deletion polymorphisms (InDels) were identified among the three mutants by resequencing. The ratio of transition to transversion in the three mutants ranged from 2.16 to 2.24. Among transversion events, G:C>C:G was significantly less common than three other types of mutations (A:T>C:G, A:T>T:A, and G:C>T:A). The proportions of six types of mutations were very similar in each mutant. The distributions of identified SBSs and InDels were similar with unevenly distributed across the genome and chromosomes. Some chromosomes had significantly more SBSs than others, and there were "hotspot" mutation regions at the ends of chromosomes. Overall, our study revealed a profile of cotton mutations caused by CIB irradiation, and these data could provide valuable information for cotton mutation breeding.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA