Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(8): 114516, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39024103

RESUMEN

Despite its significance, the role of lipid metabolism in NLRP3 inflammasome remains elusive. Here, we reveal a critical role for fatty acid synthase (FASN) in NLRP3 inflammasome activation. We demonstrate that pharmacological or genetic depletion of FASN dampens NLRP3 activation in primary mouse and human macrophages and in mice. This disruption in NLRP3 activation is contingent upon FASN activity. Accordingly, abolishing cellular palmitoylation, a post-translational modification in which the FASN product palmitate is reversibly conjugated to cysteine residues of target proteins, blunts inflammasome signaling. Correspondingly, an acyl-biotin exchange assay corroborated NLRP3 palmitoylation. Mechanistically, Toll-like receptor (TLR) ligation introduces palmitoylation at NLRP3 Cys898, permitting NLRP3 translocation to dispersed trans-Golgi network (dTGN) vesicles, the site of inflammasome assembly, upon NLRP3 activation. Accordingly, the NLRP3 Cys898 mutant exhibits reduced palmitoylation, limited translocation to the dTGN compartment, and diminished inflammasome activation. These results underscore mechanistic insights through which lipid metabolism licenses NLRP3 inflammasome assembly and activation.

2.
STAR Protoc ; 5(2): 103054, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38704832

RESUMEN

Palmitoylation is a post-translational lipid modification in which palmitic acid is conjugated predominantly to cysteine residues of target proteins, allowing them to tether to cell membranes. Here, we describe a protocol to perform a stepwise acyl biotin exchange assay to identify protein S-palmitoylation. We describe steps for initial blocking of free thiols in protein lysates, subsequent replacement of thioester-linked palmitate groups with a biotin tag for affinity enrichment, and identification of palmitoylated proteins by SDS-PAGE. For complete details on the use and execution of this protocol, please refer to Leishman et al.1.


Asunto(s)
Biotina , Lipoilación , Biotina/química , Biotina/metabolismo , Humanos , Procesamiento Proteico-Postraduccional , Células Cultivadas , Electroforesis en Gel de Poliacrilamida/métodos
3.
Trends Immunol ; 43(12): 978-989, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36371361

RESUMEN

Macrophages undergo profound metabolic reprogramming upon sensing infectious and sterile stimuli. This metabolic shift supports and regulates essential innate immune functions, including activation of the NLRP3 inflammasome. Within distinct metabolic networks, key enzymes play pivotal roles to control flux restraining detrimental inflammasome signaling. However, depending on the metabolic cues, specific enzymes and metabolites result in inflammasome activation outcomes which contrast other metabolic steps in the pathway. We posit that understanding which metabolic steps commit to discrete inflammasome fates will broaden our understanding of metabolic checkpoints to maintain homeostasis and offer better therapeutic options in human disease.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Humanos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Macrófagos , Transducción de Señal , Redes y Vías Metabólicas
4.
Immunohorizons ; 6(8): 642-659, 2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-36038196

RESUMEN

Imbalance in lipid homeostasis is associated with discrepancies in immune signaling and is tightly linked to metabolic disorders. The diverse ways in which lipids impact immune signaling, however, remain ambiguous. The phospholipid phosphatidylinositol (PI), which is implicated in numerous immune disorders, is chiefly defined by its phosphorylation status. By contrast, the significance of the two fatty acid chains attached to the PI remains unknown. In this study, by using a mass spectrometry-based assay, we demonstrate a role for PI acyl group chains in regulating both the priming and activation steps of the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome in mouse macrophages. In response to NLRP3 stimuli, cells deficient in ABC transporter ATP Binding Cassette Subfamily B Member 1 (ABCB1), which effluxes lipid derivatives, revealed defective inflammasome activation. Mechanistically, Abcb1 deficiency shifted the total PI configuration exhibiting a reduced ratio of short-chain to long-chain PI acyl lipids. Consequently, Abcb1 deficiency initiated the rapid degradation of Toll/IL-1R domain-containing adaptor protein, the TLR adaptor protein that binds PI (4,5)-bisphosphate, resulting in defective TLR-dependent signaling, and thus NLRP3 expression. Moreover, this accompanied increased NLRP3 phosphorylation at the Ser291 position and contributed to blunted inflammasome activation. Exogenously supplementing wild-type cells with linoleic acid (LA), but not arachidonic acid, reconfigured PI acyl chains. Accordingly, LA supplementation increased Toll/IL-1R domain-containing adaptor protein degradation, elevated NLRP3 phosphorylation, and abrogated inflammasome activation. Furthermore, NLRP3 Ser291 phosphorylation was dependent on PGE2-induced protein kinase A signaling because pharmacological inhibition of this pathway in LA-enriched cells dephosphorylated NLRP3. Altogether, our study reveals, to our knowledge, a novel metabolic-inflammatory circuit that contributes to calibrating immune responses.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Proteínas Adaptadoras Transductoras de Señales , Animales , Inflamasomas/metabolismo , Macrófagos , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Fosfatidilinositoles/metabolismo , Transducción de Señal
5.
Br J Pharmacol ; 179(9): 1874-1886, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-33665823

RESUMEN

BACKGROUND AND PURPOSE: Cardiac glycosides inhibit Na+ /K+ -ATPase and are used to treat heart failure and arrhythmias. They can induce inflammasome activation and pyroptosis in macrophages, suggesting cytotoxicity, which remains to be elucidated in human tissues. EXPERIMENTAL APPROACH: To determine the cell-type specificity of this cytotoxicity, we used human monocyte-derived macrophages and non-adherent peripheral blood cells from healthy donors, plus omental white adipose tissue, stromal vascular fraction-derived pre-adipocytes and adipocytes from obese patients undergoing bariatric surgery. All these cells/tissues were treated with nanomolar concentrations of ouabain (50, 100, 500 nM) to investigate the level of cytotoxicity and the mechanisms leading to cell death. In white adipose tissue, we investigated ouabain-mediated cytotoxicity by measuring insulin sensitivity, adipose tissue function and extracellular matrix deposition ex vivo. KEY RESULTS: Ouabain induced cell death through pyroptosis and apoptosis, and was more effective in monocyte-derived macrophages compared to non-adherent peripheral blood mononuclear cell populations. This cytotoxicity is dependent on K+ flux, as ouabain causes intracellular depletion of K+ and accumulation of Na+ and Ca2+ . Consistently, the cell death caused by these ion imbalances can be rescued by addition of potassium chloride to human monocyte-derived macrophages. Remarkably, when white adipose tissue explants from obese patients are cultured with nanomolar concentrations of ouabain, this causes depletion of macrophages, down-regulation of type VI collagen levels and amelioration of insulin sensitivity ex vivo. CONCLUSION AND IMPLICATIONS: The use of nanomolar concentration of cardiac glycosides could be an attractive therapeutic treatment for metabolic syndrome, characterized by pathogenic infiltration and activation of macrophages. LINKED ARTICLES: This article is part of a themed issue on Inflammation, Repair and Ageing. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.9/issuetoc.


Asunto(s)
Glicósidos Cardíacos , Tejido Adiposo/metabolismo , Tejido Adiposo Blanco/metabolismo , Glicósidos Cardíacos/metabolismo , Glicósidos Cardíacos/farmacología , Homeostasis , Humanos , Leucocitos Mononucleares/metabolismo , Macrófagos/metabolismo , Ouabaína/metabolismo , Ouabaína/farmacología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
7.
Immunol Rev ; 297(1): 108-122, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32562313

RESUMEN

Inflammasomes are multi-protein complexes that regulate the cleavage of cysteine protease caspase-1, secretion of inflammatory cytokines, and induction of inflammatory cell death, pyroptosis. Several members of the nod-like receptor family assemble inflammasome in response to specific ligands. An exception to this is the NLRP3 inflammasome which is activated by structurally diverse entities. Recent studies have suggested that NLRP3 might be a sensor of cellular homeostasis, and any perturbation in distinct metabolic pathways results in the activation of this inflammasome. Lipid metabolism is exceedingly important in maintaining cellular homeostasis, and it is recognized that cells and tissues undergo extensive lipid remodeling during activation and disease. Some lipids are involved in instigating chronic inflammatory diseases, and new studies have highlighted critical upstream roles for lipids, particularly cholesterol, in regulating inflammasome activation implying key functions for inflammasomes in diseases with defective lipid metabolism. The focus of this review is to highlight how lipids regulate inflammasome activation and how this leads to the progression of inflammatory diseases. The key roles of cholesterol metabolism in the activation of inflammasomes have been comprehensively discussed. Besides, the roles of oxysterols, fatty acids, phospholipids, and lipid second messengers are also summarized in the context of inflammasomes. The overriding theme is that lipid metabolism has numerous but complex functions in inflammasome activation. A detailed understanding of this area will help us develop therapeutic interventions for diseases where dysregulated lipid metabolism is the underlying cause.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Caspasa 1 , Colesterol , Piroptosis
9.
F1000Res ; 82019.
Artículo en Inglés | MEDLINE | ID: mdl-31131091

RESUMEN

The NLRP3 inflammasome is a multimeric protein complex that cleaves caspase-1 and the pro-inflammatory cytokines interleukin 1 beta (IL-1ß) and IL-18. Dysregulated NLRP3 inflammasome signalling is linked to several chronic inflammatory and autoimmune conditions; thus, understanding the activation mechanisms of the NLRP3 inflammasome is essential. Studies over the past few years have implicated vital roles for distinct intracellular organelles in both the localisation and assembly of the NLRP3 inflammasome. However, conflicting reports exist. Prior to its activation, NLRP3 has been shown to be resident in the endoplasmic reticulum (ER) and cytosol, although, upon activation, the NLRP3 inflammasome has been shown to assemble in the cytosol, mitochondria, and mitochondria-associated ER membranes by different reports. Finally, very recent work has suggested that NLRP3 may be localised on or adjacent to the Golgi apparatus and that release of mediators from this organelle may contribute to inflammasome assembly. Therefore, NLRP3 may be strategically placed on or in close proximity to these subcellular compartments to both sense danger signals originating from these organelles and use the compartment as a scaffold to assemble the complex. Understanding where and when NLRP3 inflammasome assembly occurs may help identify potential targets for treatment of NLRP3-related disorders.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Transducción de Señal , Caspasa 1 , Inflamasomas/fisiología , Mitocondrias , Proteína con Dominio Pirina 3 de la Familia NLR/fisiología , Multimerización de Proteína
10.
Int Rev Cell Mol Biol ; 344: 139-172, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30798987

RESUMEN

The innate immune system detects the presence of pathogens based on detection of non-self. In other words, most pathogens possess intrinsic differences that can distinguish them from host cells. For example, bacteria and fungi have cell walls comprised of peptidoglycan and carbohydrates (like mannans), respectively. Germline encoded pattern recognition receptors (PRRs) of the Toll-like receptor (TLR) and C-type lectin receptor (CLR) family have the ability to detect such unique pathogen associated features. However, some TLRs and members of the RIG-I-like receptor (RLR), NOD-like receptor (NLR), or AIM2-like receptor (ALR) family can sense pathogen invasion based on pathogen nucleic acids. Nucleic acids are not unique to pathogens, thus raising the question of how such PRRs evolved to detect pathogens but not self. In this chapter, we will examine the PRRs that sense pathogen nucleic acids and subsequently activate the inflammasome signaling pathway. We will examine the selective mechanisms by which these receptors distinguish pathogens from "self" and discuss the importance of such pathways in disease development in animal models and human patients.


Asunto(s)
Autoantígenos/metabolismo , Infecciones/inmunología , Inflamasomas/metabolismo , Ácidos Nucleicos/metabolismo , Animales , Humanos , Evasión Inmune , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
11.
J Cell Biol ; 217(10): 3560-3576, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30054450

RESUMEN

Cellular lipids determine membrane integrity and fluidity and are being increasingly recognized to influence immune responses. Cellular cholesterol requirements are fulfilled through biosynthesis and uptake programs. In an intricate pathway involving the lysosomal cholesterol transporter NPC1, the sterol gets unequally distributed across intracellular compartments. By using pharmacological and genetic approaches targeting NPC1, we reveal that blockade of cholesterol trafficking through the late endosome-lysosome pathway blunts NLRP3 inflammasome activation. Altered cholesterol localization at the plasma membrane (PM) in Npc1-/- cells abrogated AKT-mTOR signaling by TLR4. However, the inability to activate the NLRP3 inflammasome was traced to perturbed cholesterol trafficking to the ER but not the PM. Accordingly, acute cholesterol depletion in the ER membranes by statins abrogated casp-1 activation and IL-1ß secretion and ablated NLRP3 inflammasome assembly. By contrast, assembly and activation of the AIM2 inflammasome progressed unrestricted. Together, this study reveals ER sterol levels as a metabolic rheostat for the activation of the NLRP3 inflammasome.


Asunto(s)
Membrana Celular/metabolismo , Colesterol/metabolismo , Retículo Endoplásmico/metabolismo , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Transducción de Señal , Animales , Transporte Biológico Activo/fisiología , Membrana Celular/genética , Colesterol/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Retículo Endoplásmico/genética , Inflamasomas/genética , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína Niemann-Pick C1 , Proteínas/genética , Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
12.
Nat Rev Urol ; 14(5): 284-295, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28266511

RESUMEN

Urinary tract infections (UTIs) cause a huge burden of morbidity worldwide with recurrent UTIs becoming increasingly frequent owing to the emergence of antibiotic-resistant bacterial strains. Interactions between the innate and adaptive immune responses to pathogens colonizing the urinary tract have been the focus of much research. Inflammasomes are part of the innate immune defence and can respond rapidly to infectious insult. Assembly of the multiprotein inflammasome complex activates caspase-1, processes proinflammatory cytokines IL-1ß and IL-18, and induces pyroptosis. These effector pathways, in turn, act at different levels to either prevent or resolve infection, or eliminate the infectious agent itself. In certain instances, inflammasome activation promotes tissue pathology; however, the precise functions of inflammasomes in UTIs remain unexplored. An improved understanding of inflammasomes could provide novel approaches for the design of diagnostics and therapeutics for complicated UTIs, enabling us to overcome the challenge of drug resistance.


Asunto(s)
Autofagia/fisiología , Inmunidad Celular/fisiología , Inflamasomas/inmunología , Piroptosis/fisiología , Infecciones Urinarias/inmunología , Animales , Autofagia/efectos de los fármacos , Humanos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Piroptosis/efectos de los fármacos , Infecciones Urinarias/metabolismo
13.
Trends Immunol ; 37(10): 703-714, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27592079

RESUMEN

Inflammasomes are cytosolic multiprotein platforms with pivotal roles in infectious diseases. Activation of inflammasomes results in proinflammatory cytokine signaling and pyroptosis. Sexually transmitted infections (STIs) are a major health problem worldwide, yet few studies have probed the impact of inflammasome signaling during these infections. Due to the dearth of appropriate infection models, our current understanding of inflammasomes in STIs is mostly drawn from results obtained in vitro, from distant infection sites, or from related microbial strains that are not sexually transmitted. Understanding how inflammasomes influence the outcome of STIs may lead to the development of novel and effective strategies to control disease and prevent transmission. Here we discuss and highlight the recent progress in this field.


Asunto(s)
Apoptosis , Inflamasomas/metabolismo , Enfermedades de Transmisión Sexual/inmunología , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Humanos , Control de Infecciones , Mediadores de Inflamación/metabolismo , Enfermedades de Transmisión Sexual/transmisión , Transducción de Señal
14.
PLoS Pathog ; 10(9): e1004410, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25254654

RESUMEN

Enteropathogenic and enterohemorrhagic bacterial infections in humans are a severe cause of morbidity and mortality. Although NOD-like receptors (NLRs) NOD2 and NLRP3 have important roles in the generation of protective immune responses to enteric pathogens, whether there is crosstalk among NLRs to regulate immune signaling is not known. Here, we show that mice and macrophages deficient in NOD2, or the downstream adaptor RIP2, have enhanced NLRP3- and caspases-11-dependent non-canonical inflammasome activation in a mouse model of enteropathogenic Citrobacter rodentium infection. Mechanistically, NOD2 and RIP2 regulate reactive oxygen species (ROS) production. Increased ROS in Rip2-deficient macrophages subsequently enhances c-Jun N-terminal kinase (JNK) signaling resulting in increased caspase-11 expression and activation, and more non-canonical NLRP3-dependant inflammasome activation. Intriguingly, this leads to protection of the colon epithelium for up to 10 days in Rip2-deficient mice infected with C. rodentium. Our findings designate NOD2 and RIP2 as key regulators of cellular ROS homeostasis and demonstrate for the first time that ROS regulates caspase-11 expression and non-canonical NLRP3 inflammasome activation through the JNK pathway.


Asunto(s)
Proteínas Portadoras/metabolismo , Caspasas/metabolismo , Infecciones por Enterobacteriaceae/inmunología , Inflamasomas/inmunología , Proteína Adaptadora de Señalización NOD2/fisiología , Especies Reactivas de Oxígeno/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/fisiología , Animales , Western Blotting , Caspasas Iniciadoras , Citrobacter rodentium/patogenicidad , Colitis/inmunología , Colitis/metabolismo , Colitis/microbiología , Colitis/patología , Infecciones por Enterobacteriaceae/metabolismo , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/patología , Femenino , Inflamasomas/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor , Transducción de Señal
15.
J Immunol ; 192(4): 1835-46, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24453255

RESUMEN

The Nlrp3 inflammasome is critical for host immunity, but the mechanisms controlling its activation are enigmatic. In this study, we show that loss of FADD or caspase-8 in a RIP3-deficient background, but not RIP3 deficiency alone, hampered transcriptional priming and posttranslational activation of the canonical and noncanonical Nlrp3 inflammasome. Deletion of caspase-8 in the presence or absence of RIP3 inhibited caspase-1 and caspase-11 activation by Nlrp3 stimuli but not the Nlrc4 inflammasome. In addition, FADD deletion prevented caspase-8 maturation, positioning FADD upstream of caspase-8. Consequently, FADD- and caspase-8-deficient mice had impaired IL-1ß production when challenged with LPS or infected with the enteropathogen Citrobacter rodentium. Thus, our results reveal FADD and caspase-8 as apical mediators of canonical and noncanonical Nlrp3 inflammasome priming and activation.


Asunto(s)
Proteínas Portadoras/inmunología , Caspasa 8/metabolismo , Proteína de Dominio de Muerte Asociada a Fas/metabolismo , Inflamasomas/inmunología , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Unión al Calcio/metabolismo , Caspasa 1/metabolismo , Caspasa 8/genética , Caspasa 8/inmunología , Caspasas/metabolismo , Caspasas Iniciadoras , Citrobacter rodentium/inmunología , Infecciones por Enterobacteriaceae/inmunología , Activación Enzimática , Proteína de Dominio de Muerte Asociada a Fas/genética , Interleucina-1beta/metabolismo , Lipopolisacáridos , Macrófagos/inmunología , Ratones , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR , Proteína Serina-Treonina Quinasas de Interacción con Receptores/deficiencia , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Transcripción Genética
16.
Microbes Infect ; 15(10-11): 661-8, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23811097

RESUMEN

NLRs play fundamental roles in host-defense and inflammatory disorders. NLRP6 is a newly characterized member of this family that inhibits NF-κB and MAP-kinase dependent immune signaling to hamper anti-microbial defense. Further, NLRP6 regulates intestinal inflammation by maintaining gut microbiota composition. In this review, we examine the recent studies and emphasize the key functions regulated by NLRP6.


Asunto(s)
Inflamación/fisiopatología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Sistema de Señalización de MAP Quinasas , Microbiota/inmunología , FN-kappa B/antagonistas & inhibidores , Humanos
17.
Nat Immunol ; 14(5): 480-8, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23525089

RESUMEN

NOD2 receptor and the cytosolic protein kinase RIPK2 regulate NF-κB and MAP kinase signaling during bacterial infections, but the role of this immune axis during viral infections has not been addressed. We demonstrate that Nod2(-/-) and Ripk2(-/-) mice are hypersusceptible to infection with influenza A virus. Ripk2(-/-) cells exhibited defective autophagy of mitochondria (mitophagy), leading to enhanced mitochondrial production of superoxide and accumulation of damaged mitochondria, which resulted in greater activation of the NLRP3 inflammasome and production of IL-18. RIPK2 regulated mitophagy in a kinase-dependent manner by phosphorylating the mitophagy inducer ULK1. Accordingly, Ulk1(-/-) cells exhibited enhanced mitochondrial production of superoxide and activation of caspase-1. These results demonstrate a role for NOD2-RIPK2 signaling in protection against virally triggered immunopathology by negatively regulating activation of the NLRP3 inflammasome and production of IL-18 via ULK1-dependent mitophagy.


Asunto(s)
Alphainfluenzavirus/inmunología , Proteínas Portadoras/metabolismo , Inflamasomas/metabolismo , Mitocondrias/fisiología , Mitofagia , Infecciones por Orthomyxoviridae/inmunología , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo , Animales , Homólogo de la Proteína 1 Relacionada con la Autofagia , Caspasa 1/metabolismo , Células Cultivadas , Inmunidad Activa/genética , Interleucina-18/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR , Proteína Adaptadora de Señalización NOD2/genética , Proteína Adaptadora de Señalización NOD2/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/genética , Transducción de Señal/genética , Superóxidos/metabolismo , Factores de Virulencia/genética
18.
J Biol Chem ; 288(12): 8658-8666, 2013 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-23386602

RESUMEN

Borrelia burgdorferi sensu lato is the causative agent of Lyme disease. Recent studies have shown that recognition of the spirochete is mediated by TLR2 and NOD2. The latter receptor has been associated with the induction of the intracellular degradation process called autophagy. The present study demonstrated for the first time the induction of autophagy by exposure to B. burgdorferi and that autophagy modulates the B. burgdorferi-dependent cytokine production. Human peripheral blood mononuclear cells treated with autophagy inhibitors showed an increased IL-1ß and IL-6 production in response to the exposure of the spirochete, whereas TNFα production was unchanged. Autophagy induction against B. burgdorferi was dependent on reactive oxygen species (ROS) because cells from patients with chronic granulomatous disease, which are defective in ROS production, also produced elevated IL-1ß. Further, the enhanced production of the proinflammatory cytokines was because of the elevated mRNA expression in the absence of autophagy. Our results thus demonstrate the induction of autophagy, which, in turn, modulates cytokine production by B. burgdorferi for the first time.


Asunto(s)
Autofagia , Borrelia burgdorferi/fisiología , Interleucina-1beta/biosíntesis , Leucocitos Mononucleares/metabolismo , Adenina/análogos & derivados , Adenina/farmacología , Androstadienos/farmacología , Caspasa 1/metabolismo , Células Cultivadas , Activación Enzimática , Interacciones Huésped-Patógeno , Humanos , Mediadores de Inflamación/metabolismo , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Interleucina-1beta/metabolismo , Interleucina-6/biosíntesis , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/microbiología , Especies Reactivas de Oxígeno , Receptores de Interleucina-1/antagonistas & inhibidores , Receptores de Interleucina-1/metabolismo , Factor de Necrosis Tumoral alfa/biosíntesis , Wortmanina
20.
J Biol Chem ; 287(41): 34474-83, 2012 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-22898816

RESUMEN

Enteric pathogens represent a major cause of morbidity and mortality worldwide. Toll-like receptor (TLR) and inflammasome signaling are critical for host responses against these pathogens, but how these pathways are integrated remains unclear. Here, we show that TLR4 and the TLR adaptor TRIF are required for inflammasome activation in macrophages infected with the enteric pathogens Escherichia coli and Citrobacter rodentium. In contrast, TLR4 and TRIF were dispensable for Salmonella typhimurium-induced caspase-1 activation. TRIF regulated expression of caspase-11, a caspase-1-related protease that is critical for E. coli- and C. rodentium-induced inflammasome activation, but dispensable for inflammasome activation by S. typhimurium. Thus, TLR4- and TRIF-induced caspase-11 synthesis is critical for noncanonical Nlrp3 inflammasome activation in macrophages infected with enteric pathogens.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/inmunología , Proteínas Portadoras/inmunología , Caspasas/inmunología , Infecciones por Enterobacteriaceae/inmunología , Enterobacteriaceae/inmunología , Inflamasomas/inmunología , Macrófagos/inmunología , Receptor Toll-Like 4/inmunología , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Proteínas Portadoras/genética , Caspasas/genética , Caspasas Iniciadoras , Enterobacteriaceae/genética , Infecciones por Enterobacteriaceae/genética , Infecciones por Enterobacteriaceae/microbiología , Inflamasomas/genética , Activación de Macrófagos/genética , Activación de Macrófagos/inmunología , Ratones , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR , Receptor Toll-Like 4/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...