Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Stem Cells ; 37(5): 640-651, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30681750

RESUMEN

Understanding the mechanisms that promote the specification of pancreas progenitors and regulate their self-renewal and differentiation will help to maintain and expand pancreas progenitor cells derived from human pluripotent stem (hPS) cells. This will improve the efficiency of current differentiation protocols of hPS cells into ß-cells and bring such cells closer to clinical applications for the therapy of diabetes. Aldehyde dehydrogenase 1b1 (Aldh1b1) is a mitochondrial enzyme expressed specifically in progenitor cells during mouse pancreas development, and we have shown that its functional inactivation leads to accelerated differentiation and deficient ß-cells. In this report, we aimed to identify small molecule inducers of Aldh1b1 expression taking advantage of a mouse embryonic stem (mES) cell Aldh1b1 lacZ reporter line and a pancreas differentiation protocol directing mES cells into pancreatic progenitors. We identified AMI-5, a protein methyltransferase inhibitor, as an Aldh1b1 inducer and showed that it can maintain Aldh1b1 expression in embryonic pancreas explants. This led to a selective reduction in endocrine specification. This effect was due to a downregulation of Ngn3, and it was mediated through Aldh1b1 since the effect was abolished in Aldh1b1 null pancreata. The findings implicated methyltransferase activity in the regulation of endocrine differentiation and showed that methyltransferases can act through specific regulators during pancreas differentiation. Stem Cells 2019;37:640-651.


Asunto(s)
Familia de Aldehído Deshidrogenasa 1/genética , Aldehído Deshidrogenasa Mitocondrial/genética , Diferenciación Celular/genética , Diabetes Mellitus/terapia , Células Madre Pluripotentes/trasplante , Proteína Metiltransferasas/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Benzoatos/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Humanos , Células Secretoras de Insulina/metabolismo , Ratones , Células Madre Embrionarias de Ratones/efectos de los fármacos , Células Madre Embrionarias de Ratones/enzimología , Proteínas del Tejido Nervioso/genética , Páncreas/efectos de los fármacos , Páncreas/crecimiento & desarrollo , Proteína Metiltransferasas/antagonistas & inhibidores , Xantenos/farmacología
2.
Sci Rep ; 8(1): 11335, 2018 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-30054579

RESUMEN

Diabetes mellitus is a group of disorders characterized by prolonged high levels of circulating blood glucose. Type 1 diabetes is caused by decreased insulin production in the pancreas whereas type 2 diabetes may develop due to obesity and lack of exercise; it begins with insulin resistance whereby cells fail to respond properly to insulin and it may also progress to decreased insulin levels. The brain is an important target for insulin, and there is great interest in understanding how diabetes affects the brain. In addition to the direct effects of insulin on the brain, diabetes may also impact the brain through modulation of the inflammatory system. Here we investigate how perturbation of circulating insulin levels affects the expression of Hes3, a transcription factor expressed in neural stem and progenitor cells that is involved in tissue regeneration. Our data show that streptozotocin-induced ß-cell damage, high fat diet, as well as metformin, a common type 2 diabetes medication, regulate Hes3 levels in the brain. This work suggests that Hes3 is a valuable biomarker helping to monitor the state of endogenous neural stem and progenitor cells in the context of diabetes mellitus.


Asunto(s)
Envejecimiento/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Encéfalo/metabolismo , Dieta Alta en Grasa , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Metformina/administración & dosificación , Proteínas del Tejido Nervioso/metabolismo , Estreptozocina/toxicidad , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Regulación de la Expresión Génica/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Fenotipo , Proteínas Represoras
3.
Diabetologia ; 59(1): 139-150, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26518685

RESUMEN

AIMS/HYPOTHESIS: Pancreatic beta cells maintain glucose homeostasis and beta cell dysfunction is a major risk factor in developing diabetes. Therefore, understanding the developmental regulatory networks that define a fully functional beta cell is important for elucidating the genetic origins of the disease. Aldehyde dehydrogenase activity has been associated with stem/progenitor cells and we have previously shown that Aldh1b1 is specifically expressed in pancreas progenitor pools. Here we address the hypothesis that Aldh1b1 may regulate the timing of the appearance and eventual functionality of beta cells. METHODS: We generated an Aldh1b1-knockout mouse line (Aldh1b1 (tm1lacZ)) and used this to study pancreatic development, beta cell functionality and glucose homeostasis in the absence of Aldh1b1 function. RESULTS: Differentiation in the developing pancreas of Aldh1b1 (tm1lacZ) null mice was accelerated. Transcriptome analyses of newborn and adult islets showed misregulation of key beta cell transcription factors and genes crucial for beta cell function. Functional analyses showed that glucose-stimulated insulin secretion was severely compromised in islets isolated from null mice. Several key features of beta cell functionality were affected, including control of oxidative stress, glucose sensing, stimulus-coupling secretion and secretory granule biogenesis. As a result of beta cell dysfunction, homozygous mice developed glucose intolerance and age-dependent hyperglycaemia. CONCLUSIONS/INTERPRETATION: These findings show that Aldh1b1 influences the timing of the transition from the pancreas endocrine progenitor to the committed beta cell and demonstrate that changes in the timing of this transition lead to beta cell dysfunction and thus constitute a diabetes risk factor later in life. Gene Expression Omnibus (GEO) accession: GSE58025.


Asunto(s)
Aldehído Deshidrogenasa/genética , Aldehído Deshidrogenasa/fisiología , Células Secretoras de Insulina/metabolismo , Familia de Aldehído Deshidrogenasa 1 , Aldehído Deshidrogenasa Mitocondrial , Alelos , Animales , Glucemia/análisis , Diferenciación Celular , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Glucógeno/metabolismo , Homeostasis , Hiperglucemia/metabolismo , Islotes Pancreáticos/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados , Estrés Oxidativo , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Riesgo , Células Madre/citología , Transcriptoma
4.
Fish Shellfish Immunol ; 31(3): 491-9, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21703349

RESUMEN

The complement system in vertebrates plays a crucial role in the elimination of pathogens. To regulate complement on self-tissue and to prevent spontaneous activation and systemic depletion, complement is controlled by both fluid-phase and membrane-bound inhibitors. One such inhibitor, complement factor I (CFI) regulates complement by proteolytic cleavage of components C3b and C4b in the presence of specific cofactors. Complement factor H (CFH), the main cofactor for CFI, regulates the alternative pathway of complement activation by acting in the breakdown of C3b to iC3b. To gain further insight into the origin of C3 regulation in bony fish we have cloned and characterized the CFI and CFH1 cDNAs in the rainbow trout (Oncorhynchus mykiss). In this study we report the primary sequence, the tissue expression profile, the polypeptide domain architecture and the phylogenetic analysis of trout CFI and CFH1 genes. The deduced amino acid sequences of trout CFI and CFH1 polypeptides exhibit 42% and 32% identity with human orthologs, respectively. RNA expression analysis showed that CFI is expressed differentially in trout tissues, while liver is the main source of CFH1 expression. Our data indicate that factor H and I genes have emerged during evolution as early as the divergence of teleost fish.


Asunto(s)
Complemento C3/metabolismo , Factor H de Complemento/metabolismo , Fibrinógeno/metabolismo , Regulación de la Expresión Génica/fisiología , Oncorhynchus mykiss/metabolismo , Secuencia de Aminoácidos , Animales , Clonación Molecular , Complemento C3/genética , Factor H de Complemento/genética , Datos de Secuencia Molecular , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...