Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Phytopathology ; 114(3): 549-557, 2024 Mar.
Article En | MEDLINE | ID: mdl-37856691

Nothopassalora personata is one of the most economically severe pathogens of peanut in the United States. The fungus primarily relies on wind and rain for dispersal, which has been documented up to 10 m from an inoculum source. Spore traps have been used in a wide variety of pathosystems to study epidemiology, document detection, develop alert systems, and guide management programs. The objective of this study was to use spore traps and N. personata-specific qPCR primers to quantitatively evaluate dispersal of N. personata conidia at distances up to 70 m from an infected peanut field and to examine relationships between quantities captured and weather variables. Impaction spore samplers were placed at 4, 10, 30, 50, and 70 m from peanut fields at the Edisto Research and Education Center (six fields) and commercial peanut fields in Barnwell and Bamberg counties (one field each) from 2020 to 2022. Following initial detection, samples were collected at a 48-, 48-, 72-h interval until harvest. N. personata conidia were detected at all locations and distances, documenting dispersal up to 70 m from an inoculum source. This result is a reminder that volunteer management is crucial when rotating peanut in nearby fields. A model for predicting log spore quantities was developed using temperature and humidity variables. Temperature variables associated with observed sampling periods had a negative correlation with N. personata quantities, whereas parameters of relative humidity and mean windspeed were positively correlated.


Ascomycota , Plant Diseases , Humans , Plant Diseases/microbiology , Weather , Wind , Arachis/microbiology , Spores, Fungal
2.
Plant Dis ; 108(2): 416-425, 2024 Feb.
Article En | MEDLINE | ID: mdl-37526489

Early leaf spot (Passalora arachidicola) and late leaf spot (Nothopassalora personata) are two of the most economically important foliar fungal diseases of peanut, often requiring seven to eight fungicide applications to protect against defoliation and yield loss. Rust (Puccinia arachidis) may also cause significant defoliation depending on season and location. Sensor technologies are increasingly being utilized to objectively monitor plant disease epidemics for research and supporting integrated management decisions. This study aimed to develop an algorithm to quantify peanut disease defoliation using multispectral imagery captured by an unmanned aircraft system. The algorithm combined the Green Normalized Difference Vegetation Index and the Modified Soil-Adjusted Vegetation Index and included calibration to site-specific peak canopy growth. Beta regression was used to train a model for percent net defoliation with observed visual estimations of the variety 'GA-06G' (0 to 95%) as the target and imagery as the predictor (train: pseudo-R2 = 0.71, test k-fold cross-validation: R2 = 0.84 and RMSE = 4.0%). The model performed well on new data from two field trials not included in model training that compared 25 (R2 = 0.79, RMSE = 3.7%) and seven (R2 = 0.87, RMSE = 9.4%) fungicide programs. This objective method of assessing mid-to-late season disease severity can be used to assist growers with harvest decisions and researchers with reproducible assessment of field experiments. This model will be integrated into future work with proximal ground sensors for pathogen identification and early season disease detection.[Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Arachis , Fungicides, Industrial , Arachis/microbiology , Fungicides, Industrial/pharmacology , Seasons , Aircraft , Plant Diseases
3.
Sci Rep ; 10(1): 22163, 2020 12 17.
Article En | MEDLINE | ID: mdl-33335149

Understanding the changes in peanut (Arachis hypogaea L.) anther lipidome under heat stress (HT) will aid in understanding the mechanisms of heat tolerance. We profiled the anther lipidome of seven genotypes exposed to ambient temperature (AT) or HT during flowering. Under AT and HT, the lipidome was dominated by phosphatidylcholine (PC), phosphatidylethanolamine (PE), and triacylglycerol (TAG) species (> 50% of total lipids). Of 89 lipid analytes specified by total acyl carbons:total carbon-carbon double bonds, 36:6, 36:5, and 34:3 PC and 34:3 PE (all contain 18:3 fatty acid and decreased under HT) were the most important lipids that differentiated HT from AT. Heat stress caused decreases in unsaturation indices of membrane lipids, primarily due to decreases in highly-unsaturated lipid species that contained 18:3 fatty acids. In parallel, the expression of Fatty Acid Desaturase 3-2 (FAD3-2; converts 18:2 fatty acids to 18:3) decreased under HT for the heat-tolerant genotype SPT 06-07 but not for the susceptible genotype Bailey. Our results suggested that decreasing lipid unsaturation levels by lowering 18:3 fatty-acid amount through reducing FAD3 expression is likely an acclimation mechanism to heat stress in peanut. Thus, genotypes that are more efficient in doing so will be relatively more tolerant to HT.


Arachis/physiology , Flowers/physiology , Heat-Shock Response , Lipid Metabolism , Lipidomics , Acclimatization , Gene Expression Profiling , Gene Expression Regulation, Plant , Lipidomics/methods , Plant Physiological Phenomena , Quantitative Trait, Heritable , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry
4.
Plants (Basel) ; 9(10)2020 Oct 09.
Article En | MEDLINE | ID: mdl-33050299

A quantitative PCR (qPCR)-assay was developed to detect airborne inoculum of Nothopassalora personata, causal agent of late leaf spot (LLS) on peanut, collected with a modified impaction spore trap. The qPCR assay was able to consistently detect as few as 10 spores with purified DNA and 25 spores based on crude DNA extraction from rods. In 2019, two spore traps were placed in two peanut fields with a history of LLS. Sampling units were replaced every 2 to 4 days and tested with the developed qPCR assay, while plots were monitored for symptom development. The system detected inoculum 35 to 56 days before visual symptoms developed in the field, with detection related to environmental parameters affecting pathogen life-cycle and disease development. This study develops the framework of the qPCR spore trap system and represents the initial steps towards validation of the performance of the system for use as a decision support tool to complement integrated management of LLS.

5.
Plant Dis ; : PDIS03200547RE, 2020 Sep 08.
Article En | MEDLINE | ID: mdl-32900292

Late and early leaf spot are caused by Nothopassalora personata and Passalora arachidicola, respectively, and are damaging diseases of peanut (Arachis hypogaea L.) capable of defoliation and yield loss. Management of these diseases is most effective through the integration of tactics that reduce starting inoculum and prevent infection. The insecticide phorate was first registered in 1959 and has been used in peanut production for decades in-furrow at planting to suppress thrips. Phorate further provides significant suppression of Tomato spotted wilt virus infection beyond suppression of its thrips vector alone by activating defense-related responses in the peanut plant. From six experiments conducted from 2017 to 2019 in Blackville, SC, Reddick, FL, and Quincy, FL, significantly less leaf spot defoliation was exhibited on peanuts treated with phorate in-furrow at planting (26%) compared with nontreated checks (48%). In-season fungicides were excluded from five of the experiments, whereas the 2018 Quincy, FL, experiment included eight applications on a 15-day interval. Across individual experiments, significant suppression of defoliation caused by late leaf spot was observed from 64 to 147 days after planting. Although more variable within location-years, pod yield following phorate treatment was overall significantly greater than for nontreated peanut (2,330 compared with 2,030 kg/ha; P = 0.0794). The consistent defoliation suppression potential was estimated to confer an average potential net economic yield savings of $90 to $120 per hectare under analogous leaf spot defoliation. To our knowledge, these are the first data in the 61 years since its registration demonstrating significant suppression of leaf spot on peanut following application of phorate in-furrow at planting. Results support phorate use in peanut as an effective and economical tactic to incorporate to manage late and early leaf spot infections and development of fungicide resistance.

6.
Plant Dis ; 104(5): 1390-1399, 2020 May.
Article En | MEDLINE | ID: mdl-32223639

Late and early leaf spot, respectively caused by Nothopassalora personata and Passalora arachidicola, are damaging diseases of peanut (Arachis hypogaea) capable of defoliating canopies and reducing yield. Although one of these diseases may be more predominant in a given area, both are important on a global scale. To assist informed management decisions and quantify relationships between end-of-season defoliation and yield loss, meta-analyses were conducted over 140 datasets meeting established criteria. Slopes of proportion yield loss with increasing defoliation were estimated separately for Virginia and runner market type cultivars. Yield loss for Virginia types was described by an exponential function over the range of defoliation levels, with a loss increase of 1.2 to 2.2% relative to current loss levels per additional percent defoliation. Results for runner market type cultivars showed yield loss to linearly increase 2.2 to 2.8% per 10% increase in defoliation for levels up to approximately 95% defoliation, after which the rate of yield loss was exponential. Defoliation thresholds to prevent economic yield loss for Virginia and runner types were estimated at 40 and 50%, respectively. Although numerous factors remain important in mitigating overall yield losses, the integration of these findings should aid recommendations about digging under varying defoliation intensities and peanut maturities to assist in minimizing yield losses.


Arachis , Ascomycota , Virginia
7.
Plant Dis ; 104(4): 1096-1104, 2020 Apr.
Article En | MEDLINE | ID: mdl-32031909

Tomato spotted wilt (TSW) is a common and serious disease of peanut (Arachis hypogaea L.) caused by Tomato spotted wilt virus (TSWV; family Tospoviridae, genus Orthotospovirus). Management frequently uses an integrated approach, with cultivar resistance and application of in-furrow insecticide as two critical components. In-furrow insecticides help suppress thrips, which can injure and stunt young growing plants and transmit TSWV, with postemergent application of acephate capable of providing additional thrips control. To examine effects of systemic insecticides (imidacloprid, imidacloprid plus fluopyram, phorate, and acephate) on TSW management, yield, and economic return across cultivar susceptibilities (susceptible, moderately susceptible, and resistant) in South Carolina, a meta-analysis was used to synthesize results from 32 studies conducted between 2009 and 2018. Although efficacy and magnitude of individual treatments varied with susceptibility, imidacloprid increased, whereas phorate generally decreased TSW incidence relative to nontreated controls. In-furrow treatments followed by acephate further reduced TSW incidence and increased profitability. All examined treatments improved yield compared with untreated peanuts except for susceptible cultivars treated with imidacloprid. Imidacloprid plus fluopyram increased yield more than imidacloprid alone for the susceptible group, although there was little difference between these treatments in association with moderately susceptible cultivars. When comparing individual applications, phorate was overall the most profitable option across susceptibilities, although imidacloprid plus fluopyram exhibited analogous profitability for susceptible cultivars. Results from this study can be used to assist producer selection of management options for TSW in peanut.


Insecticides , Solanum lycopersicum , Animals , Arachis , Plant Diseases , South Carolina
8.
Phytopathology ; 110(1): 130-145, 2020 Jan.
Article En | MEDLINE | ID: mdl-31573394

Epidemics of tomato yellow leaf curl virus (TYLCV; species Tomato yellow leaf curl begomovirus) have been problematic to tomato production in the southeastern United States since the first detection of the virus in Florida in the late 1990s. Current strategies for management focus on farm-centric tactics that have had limited success for controlling either TYLCV or its whitefly vector. Areawide pest management (AWPM)-loosely defined as a coordinated effort to implement management strategies on a regional scale-may be a viable management alternative. A prerequisite for development of an AWPM program is an understanding of the spatial and temporal dynamics of the target pathogen and pest populations. The objective of this study was to characterize populations of whitefly and TYLCV in commercial tomato production fields in southwestern Florida and utilize this information to develop predictors of whitefly density and TYLCV disease incidence as a function of environmental and geographical factors. Scouting reports were submitted by cooperating growers located across approximately 20,000 acres in southwestern Florida from 2006 to 2012. Daily weather data were obtained from several local weather stations. Moran's I was used to assess spatial relationships and polynomial distributed lag regression was used to determine the relationship between weather variables, whitefly, and TYLCV. Analyses showed that the incidence of TYLCV increased proportionally with mean whitefly density as the season progressed. Nearest-neighbor analyses showed a strong linear relationship between the logarithms of whitefly densities in neighboring fields. A similar relationship was found with TYLCV incidences. Correlograms based on Moran's I showed that these relationships extended beyond neighboring fields and out to approximately 2.5 km for TYLCV and up to 5 km for whitefly, and that values of I were generally higher during the latter half of the production season for TYLCV. Weather was better at predicting whitefly density than at predicting TYLCV incidence. Whitefly density was best predicted by the number of days with an average temperature between 16 and 24°C (T16to24), relative humidity (RH) over the previous 31 days, and vapor pressure deficit over the last 8 days. TYLCV incidence was best predicted by T16to24, RH, and maximum wind speed over the previous 31 days. Results of this study helped to identify the extent to which populations of whitefly and TYLCV exist over the agricultural landscape of southwestern Florida, and the environmental conditions that favor epidemic growth. This information was used to propose an approach to AWPM for timing control measures for managing TYLCV epidemics.


Begomovirus , Hemiptera , Plant Diseases , Solanum lycopersicum , Animals , Begomovirus/physiology , Florida , Hemiptera/virology , Solanum lycopersicum/virology , Plant Diseases/virology , Population Density , Southeastern United States , Time Factors
9.
Mycologia ; 101(6): 853-8, 2009.
Article En | MEDLINE | ID: mdl-19927750

Phomopsis viticola is the causal agent of Phomopsis cane and leaf spot on Vitis spp., a persistent and economically important disease in temperate regions. Here we describe the transformation of this fungus with two different constructs (pBHt2_sGFP and pIGPAPA) containing the green fluorescent protein (GFP) and the hygromycin B resistance gene (hph). Protoplast-mediated transformation yielded mitotically stable transformants with no change in virulence on grape internodes and leaves in comparison to the wild type. These transformants will be critical tools for elucidating fungal penetration of host plants, invasive growth and the nature of its host association.


Ascomycota/genetics , Green Fluorescent Proteins , Transformation, Genetic , Ascomycota/cytology , Ascomycota/pathogenicity , Genes, Reporter , Hyphae/cytology , Plant Diseases/microbiology , Promoter Regions, Genetic , Virulence , Vitis/microbiology
...