Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 52
1.
Virus Res ; 344: 199353, 2024 06.
Article En | MEDLINE | ID: mdl-38490581

The emergence of SARS-CoV-2 variants has led to several cases among children. However, limited information is available from North African countries. This study describes the SARS-CoV-2 strains circulating in Tunisian pediatric population during successive waves. A total of 447 complete sequences were obtained from individuals aged from 13 days to 18 years, between March 2020 and September 2022: 369 sequences generated during this study and 78 ones, available in GISAID, previously obtained from Tunisian pediatric patients. These sequences were compared with 354 and 274 ones obtained from Tunisian adults and a global dataset, respectively. The variant circulation dynamics of predominant variants were investigated during the study period using maximum-likelihood phylogenetic analysis. Among the studied population, adolescents were the predominant age group, comprising 55.26% of cases. Twenty-three lineages were identified; seven of which were not previously reported in Tunisia. Phylogenetic analysis showed a close relationship between the sequences from Tunisian adults and children. The connections of sequences from other countries were variable according to variants: close relationships were observed for Alpha, B1.160 and Omicron variants, while independent Tunisian clusters were observed for Delta and B.1.177 lineages. These findings highlight the pivotal role of children in virus transmission and underscore the impact of vaccination on virus spread. Vaccination of children, with booster doses, may be considered for better management of future emergences.


COVID-19 , Phylogeny , SARS-CoV-2 , Humans , Tunisia/epidemiology , COVID-19/virology , COVID-19/epidemiology , Child , SARS-CoV-2/genetics , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , Child, Preschool , Infant , Adolescent , Male , Infant, Newborn , Female
2.
Heliyon ; 9(11): e21101, 2023 Nov.
Article En | MEDLINE | ID: mdl-38027571

Within public health control strategies for SARS-CoV-2, whole genome sequencing (WGS) is essential for tracking viral spread and monitoring the emergence of variants which may impair the effectiveness of vaccines, diagnostic methods, and therapeutics. In this manuscript different strategies for SARS-CoV-2 WGS including metagenomic shotgun (SG), library enrichment by myBaits® Expert Virus-SARS-CoV-2 (Arbor Biosciences), nCoV-2019 sequencing protocol, ampliseq approach by Swift Amplicon® SARS-CoV-2 Panel kit (Swift Biosciences), and Illumina COVIDSeq Test (Illumina Inc.), were evaluated in order to identify the best approach in terms of results, labour, and costs. The analysis revealed that Illumina COVIDSeq Test (Illumina Inc.) is the best choice for a cost-effective, time-consuming production of consensus sequences.

3.
Front Med (Lausanne) ; 10: 1226207, 2023.
Article En | MEDLINE | ID: mdl-38020093

Background: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for serious respiratory infections in humans. Even in the absence of respiratory symptoms, gastrointestinal (GI) signs were commonly reported in adults and children. Thus, oral-fecal transmission was suspected as a possible route of infection. The objective of this study was to describe RNA shedding in nasopharyngeal and stool samples obtained from asymptomatic and symptomatic children and to investigate virus viability. Methods: This study included 179 stool and 191 nasopharyngeal samples obtained from 71 children, which included symptomatic (n = 64) and asymptomatic (n = 7) ones. They were collected every 7 days from the onset of the infection until negativation. Viral RNA was detected by real-time RT-PCR, targeting the N and ORF1 genes. Whole-genome sequencing was performed for positive cases. Viral isolation was assessed on Vero cells, followed by molecular detection confirmation. Results: All cases included in this study (n = 71) were positive in their nasopharyngeal samples. SARS-CoV-2 RNA was detected in 36 stool samples obtained from 15 out of 71 (21.1%) children; 13 were symptomatic and two were asymptomatic. Excretion periods varied from 7 to 21 days and 7 to 14 days in nasopharyngeal and fecal samples, respectively. Four variants were detected: Alpha (n = 3), B.1.160 (n = 3), Delta (n = 7), and Omicron (n = 1). Inoculation of stool samples on cell culture showed no specific cytopathic effect. All cell culture supernatants were negative for RT-qPCR. Conclusion: Our study demonstrated nasopharyngeal and fecal shedding of SARS-CoV-2 RNA by children up to 21 and 14 days, respectively. Fecal shedding was recorded in symptomatic and asymptomatic children. Nevertheless, SARS-CoV-2 was not isolated from positive stool samples.

4.
Nat Commun ; 14(1): 6440, 2023 10 13.
Article En | MEDLINE | ID: mdl-37833275

It is unclear whether West Nile virus (WNV) circulates between Africa and Europe, despite numerous studies supporting an African origin and high transmission in Europe. We integrated genomic data with geographic observations and phylogenetic and phylogeographic inferences to uncover the spatial and temporal viral dynamics of WNV between these two continents. We focused our analysis towards WNV lineages 1 (L1) and 2 (L2), the most spatially widespread and pathogenic WNV lineages. Our study shows a Northern-Western African origin of L1, with back-and-forth exchanges between West Africa and Southern-Western Europe; and a Southern African origin of L2, with one main introduction from South Africa to Europe, and no back introductions observed. We also noticed a potential overlap between L1 and L2 Eastern and Western phylogeography and two Afro-Palearctic bird migratory flyways. Future studies linking avian and mosquito species susceptibility, migratory connectivity patterns, and phylogeographic inference are suggested to elucidate the dynamics of emerging viruses.


West Nile Fever , West Nile virus , Animals , West Nile virus/genetics , Phylogeny , Europe/epidemiology , South Africa , Birds
5.
Front Microbiol ; 14: 1242693, 2023.
Article En | MEDLINE | ID: mdl-37700864

The rapid emergence of carbapenem-resistant Klebsiella pneumoniae (Kp) strains in diverse environmental niches, even outside of the clinical setting, poses a challenge for the detection and the real-time monitoring of novel antimicrobial resistance trends using molecular and whole genome sequencing-based methods. The aim of our study was to understand cryptic resistance determinants responsible for the phenotypic carbapenem resistance observed in strains circulating in Italy by using a combined approach involving whole genome sequencing (WGS) and genome-wide association study (GWAS). In this study, we collected 303 Kp strains from inside and outside clinical settings between 2018-2022 in the Abruzzo region of Italy. The antimicrobial resistance profile of all isolates was assessed using both phenotypic and bioinformatic methods. We identified 11 strains resistant to carbapenems, which did not carry any known genetic determinants explaining their phenotype. The GWAS results showed that incongruent carbapenem-resistant phenotype was associated specifically with strains with two capsular types, KL13 and KL116 including genes involved in the capsule synthesis, encoding proteins involved in the assembly of the capsule biosynthesis apparatus, capsule-specific sugar synthesis, processing and export, polysaccharide pyruvyl transferase, and lipopolysaccharide biosynthesis protein. These preliminary results confirmed the potential of GWAS in identifying genetic variants present in KL13 and KL116 that could be associated with carbapenem resistance traits in Kp. The implementation of advanced methods, such as GWAS with increased antimicrobial resistance surveillance will potentially improve Kp infection treatment and patient outcomes.

6.
iScience ; 26(9): 107582, 2023 Sep 15.
Article En | MEDLINE | ID: mdl-37680464

Epithelial-mesenchymal transition (EMT) changes cell phenotype by affecting immune properties of amniotic epithelial cells (AECs). The present study shows how the response to lipopolysaccharide of cells collected pre- (eAECs) and post-EMT (mAECs) induces changes in their transcriptomics profile. In fact, eAECs mainly upregulate genes involved in antigen-presenting response, whereas mAECs over-express soluble inflammatory mediator transcripts. Consistently, network analysis identifies CIITA and Nrf2 as main drivers of eAECs and mAECs immune response, respectively. As a consequence, the depletion of CIITA and Nrf2 impairs the ability of eAECs and mAECs to inhibit lymphocyte proliferation or macrophage-dependent IL-6 release, thus confirming their involvement in regulating immune response. Deciphering the mechanisms controlling the immune function of AECs pre- and post-EMT represents a step forward in understanding key physiological events wherein these cells are involved (pregnancy and labor). Moreover, controlling the immunomodulatory properties of eAECs and mAECs may be essential in developing potential strategies for regenerative medicine applications.

7.
Viruses ; 15(6)2023 05 27.
Article En | MEDLINE | ID: mdl-37376561

West Nile virus is a re-emerging arbovirus whose impact on public health is increasingly important as more and more epidemics and epizootics occur, particularly in America and Europe, with evidence of active circulation in Africa. Because birds constitute the main reservoirs, migratory movements allow the diffusion of various lineages in the world. It is therefore crucial to properly control the dispersion of these lineages, especially because some have a greater health impact on public health than others. This work describes the development and validation of a novel whole-genome amplicon-based sequencing approach to West Nile virus. This study was carried out on different strains from lineage 1 and 2 from Senegal and Italy. The presented protocol/approach showed good coverage using samples derived from several vertebrate hosts and may be valuable for West Nile genomic surveillance.


West Nile Fever , West Nile virus , Animals , Humans , West Nile virus/genetics , West Nile Fever/epidemiology , West Nile Fever/veterinary , Europe/epidemiology , Italy , Senegal
8.
Microbiol Resour Announc ; 12(6): e0136422, 2023 Jun 20.
Article En | MEDLINE | ID: mdl-37166310

We report here the whole-genome sequence of the African swine fever virus (ASFV) genotype II, strain 20355/RM/2022_Italy, identified in a wild boar in the city of Rome (Lazio region, Italy) in April 2022.

10.
Animals (Basel) ; 14(1)2023 Dec 19.
Article En | MEDLINE | ID: mdl-38200735

Microplastic contamination is a growing marine environmental issue with possible consequences for seafood safety. Filter feeders are the target species for microplastic (MPs) pollution because they filter large quantities of seawater to feed. In the present study, an experimental contamination of Mytilus galloprovincialis was conducted using a mixture of the main types of MPs usually present in the seawater column (53% filaments, 30% fragments, 3% granules) in order to test the purification process as a potential method for removing these contaminants from bivalves intended for human consumption. A set of molecular biomarkers was also evaluated in order to detect any variations in the expression levels of some genes associated with biotransformation and detoxification, DNA repair, cellular response, and the immune system. Our results demonstrate that: (a) the purification process can significantly reduce MP contamination in M. galloprovincialis; (b) a differential expression level has been observed between mussels tested and in particular most of the differences were found in the gills, thus defining it as the target organ for the use of these biomarkers. Therefore, this study further suggests the potential use of molecular biomarkers as an innovative method, encouraging their use in next-generation marine monitoring programs.

11.
Vaccines (Basel) ; 10(12)2022 Dec 13.
Article En | MEDLINE | ID: mdl-36560544

The pandemic of coronavirus disease 19 (COVID-19) has focused the attention of researchers, and especially public opinion, on the role of the human-animal-environment interface in disease emergence. At the beginning of the COVID-19 pandemic, media reports regarding the role of pets in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused significant concern and social anxiety. Although nowadays proven negligible in developed countries, essentially no studies have been performed in low-income African areas where companion animals are often raised differently from high income countries, and the contact patterns occurring in these scenarios could affect the epidemiological scenario. An extensive molecular biology survey was performed from March 2022 to September 2022 on Namibian dogs residing in urban and rural areas, showing a low but not negligible SARS-CoV-2 prevalence (1%; 95CI: 0.33-2.32%) of 5 out of 500. In only one instance (i.e., a 4-year-old female Labrador) was there a clear association that could be established between the infections of the owner and animal. In all other cases, no evidence of human infection could be obtained and no episodes of COVID-19 were reported by the owners. Although no consistent evidence of pet-to-pet transmission was proven in the present study, a cautionary principle suggests intensive and dedicated investigation into companion animal populations, especially when animal contact is frequent and a particularly susceptible population is present.

12.
Mol Reprod Dev ; 89(12): 646-654, 2022 12.
Article En | MEDLINE | ID: mdl-36444830

Mitochondrial DNA (mtDNA) plays a crucial role in the development of a competent oocyte. Indeed, mtDNA alterations may predispose to chromosome nondisjunction, resulting in infertility due to a reduced vitality and quality of oocytes and embryos. In this methods paper, the multiple displacement amplification approach was applied in combination with next-generation sequencing (NGS) to amplify and sequence, in single-end, the entire mtDNA of single human oocytes to directly construct genomic NGS libraries, and subsequently, to highlight and quantify the mutations they presented. The bioinformatic workflow was carried out with a specific ad hoc developed in-house software. This approach proved to be sensitive and specific, also highlighting the mutations present in heteroplasmy, showing deletion, insertion or substitution mutations in the genes involved in the respiratory chain, even if the found variants were benign or of uncertain meaning. The analysis of mtDNA mutations in the oocyte could provide a better understanding of specific genetic abnormalities and of their possible effect on oocyte developmental competence. This study shows how this approach, based on a massive parallel sequencing of clonally amplified DNA molecules, allows to sequence the entire mitochondrial genome of single oocytes in a short time and with a single analytical run and to verify mtDNA mutations.


Heteroplasmy , Mitochondria , Humans , Mitochondria/genetics , DNA, Mitochondrial/genetics , Oocytes/metabolism , High-Throughput Nucleotide Sequencing/methods
13.
Res Vet Sci ; 151: 36-41, 2022 Dec 10.
Article En | MEDLINE | ID: mdl-35853329

Bluetongue virus (BTV) is the etiologic agent of bluetongue, a WOAH (founded as Office International des Épizooties, OIE)-notifiable economically important disease of ruminants. BTV is transmitted by Culicoides biting midges and 24 different "classical" serotypes have been reported to date. In recent years, several putative novel BTV serotypes, often referred to as "atypical" BTVs, have been documented. These are characterized by unusual biological characteristics, most notably avirulence and vector-independent transmission. Here, we describe the recurrence of such an atypical virus strain BTV-X ITL2021 detected in goats six years after its first discovery in Sardinia, Italy. Combined serological and genome analysis results clearly suggest that the two strains belong to the same BTV serotype. However, unlike the 2015 strain, BTV-X ITL2021 was successfully isolated in BSR cell-culture allowing further serological characterization. Lastly, seropositivity for BTV-X ITL2021 was detected by virus-neutralization in approximately 74% of animals tested, suggesting that this atypical BTV serotype has been circulating undetected in asymptomatic animals for years.


Bluetongue virus , Bluetongue , Ceratopogonidae , Goat Diseases , Sheep Diseases , Animals , Bluetongue/epidemiology , Bluetongue virus/genetics , Goat Diseases/epidemiology , Goats , Italy/epidemiology , Serogroup , Sheep
14.
Pathogens ; 11(5)2022 Apr 26.
Article En | MEDLINE | ID: mdl-35631035

Since the very beginning of the COVID-19 pandemic, SARS-CoV-2 detection has been described in several animal species. A total of 625 outbreaks in animals have been reported globally, affecting 17 species in 32 countries and the human source of infection has been recognized including pet owners, zookeepers, and farmers. In this report, we describe the case of a paucisymptomatic dog in Italy infected with SARS-CoV-2 from a household with three confirmed human cases of COVID-19 living in Pesaro (Marche region, Italy). The dog showed high viral RNA titers in the nasal and oropharyngeal swabs. In the nasal swab, SARS-CoV-2 RNA lasted for a least a week. By sequencing, the strain was assigned to the AY.23 lineage (PANGO), one of the sub-lineages of the major SARS-CoV-2 Delta variant of concern (VOC). Although we did not process the swabs of the three human cases, we strongly suspect a human origin for the dog infection. In this regard, AY.23 sequences, although never released thus far in the Marche region, were detected in the neighboring regions. Our findings highlight once more the need for a One Health approach for SARS-CoV-2 surveillance, management, and control, thus preventing viral spillover from animals to humans.

15.
Emerg Infect Dis ; 28(1): 139-147, 2022 01.
Article En | MEDLINE | ID: mdl-34932464

Streptococcus suis is a pathogen associated with severe diseases in pigs and humans. Human infections have a zoonotic origin in pigs. To assess circulating strains, we characterized the serotypes, sequence types, and antimicrobial susceptibility of 78 S. suis isolates from diseased farmed pigs in Italy during 2017-2019. Almost 60% of infections were caused by serotypes 1/2 and 9. All but 1 of the serotype 2 and 1/2 isolates were confined to a single cluster, and serotype 9 isolates were distributed along the phylogenetic tree. Besides sequence type (ST) 1, the serotype 2 cluster included ST7, which caused severe human infections in China in 1998 and 2005. A large proportion of serotype 9 isolates, assigned to ST123, were resistant to penicillin. The emergence of this clone threatens the successful treatment of S. suis infection. Characterizing S. suis isolates from pigs will promote earlier detection of emerging clones.


Anti-Infective Agents , Pharmaceutical Preparations , Streptococcal Infections , Streptococcus suis , Swine Diseases , Animals , Phylogeny , Streptococcal Infections/epidemiology , Streptococcal Infections/veterinary , Streptococcus suis/genetics , Swine , Swine Diseases/epidemiology
16.
Microorganisms ; 9(11)2021 Oct 26.
Article En | MEDLINE | ID: mdl-34835357

With most epidemiological studies focused on poultry, dogs are often overlooked as a reservoir of Campylobacter, even though these animals maintain close daily contact with humans. The present study aimed to obtain a first insight into the presence and characteristics of Campylobacter spp. in different canine populations in Portugal, and to evaluate its zoonotic potential through genomic analysis. From a total of 125 rectal swabs collected from companion (n = 71) and hunting dogs (n = 54) living in two different settings, rural (n = 75) and urban (n = 50), 32 Campylobacter spp. isolates were obtained. Four different Campylobacter species were identified by Multiplex PCR and MALDI-TOF mass spectrometry, of which Campylobacter jejuni (n = 14, 44%) was overall the most frequently found species. Relevant resistance phenotypes were detected in C. jejuni, with 93% of the isolates being resistant to ciprofloxacin, 64% to tetracycline, and 57% to ampicillin, and three isolates being multi-drug-resistant. Comparison of the phenotypic and genotypic traits with human isolates from Portuguese patients revealed great similarity between both groups. Particularly relevant, the wgMLST analysis allowed the identification of isolates from human and dogs without any apparent epidemiological relationship, sharing high genetic proximity. Notwithstanding the limited sample size, considering the high genomic diversity of C. jejuni, the genetic overlap between human and dog strains observed in this study confirmed that the occurrence of this species in dogs is of public health concern, reinforcing the call for a One Health approach.

17.
Microbiol Resour Announc ; 10(31): e0061821, 2021 Aug 05.
Article En | MEDLINE | ID: mdl-34351227

Novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants are emerging worldwide. Here, we report the complete genome sequences of 13 severe acute SARS-CoV-2 strains belonging to lineage B.1.525 (variant η).

18.
Int J Infect Dis ; 105: 753-755, 2021 04.
Article En | MEDLINE | ID: mdl-33684558

Following the announcement on December 2020 about the emergence of a new variant (VOC 202012/ 01, B.1.1.7 lineage) in the United Kingdom, a targeted surveillance was put in place in the Abruzzo region (Italy), which allowed detection of 313 persons affected by lineage B.1.1.7, up to the 20th of February 2021. We investigated the results of RT-PCR on nasopharyngeal swabs tested from December 2020 to February 2021 to verify any difference on the viral load and persistence between people infected by lineage B.1.1.7 and others. Statistically significant lower values of CT associated with the detection of the N protein encoding gene (CT N) were observed in persons with lineage B.1.1.7 infection (median CT N = 15.8)in comparison to those infected by other lineages (median CT N = 16.9). A significantly longer duration of the persistence of SARS-CoV-2 RNA in nasopharyngeal swabs was observed in persons with lineage B.1.1.7 infection (16 days) in comparison to those infected by other lineages (14 days).


COVID-19 Testing , COVID-19/diagnosis , COVID-19/epidemiology , SARS-CoV-2 , Humans , Italy/epidemiology , RNA, Viral , Viral Load
19.
Microorganisms ; 9(2)2021 Feb 13.
Article En | MEDLINE | ID: mdl-33668440

A total of 66 Listeria monocytogenes (Lm) isolated from 2013 to 2018 in a small-scale meat processing plant and a dairy facility of Central Italy were studied. Whole Genome Sequencing and bioinformatics analysis were used to assess the genetic relationships between the strains and investigate persistence and virulence abilities. The biofilm forming-ability was assessed in vitro. Cluster analysis grouped the Lm from the meat plant into three main clusters: two of them, both belonging to CC9, persisted for years in the plant and one (CC121) was isolated in the last year of sampling. In the dairy facility, all the strains grouped in a CC2 four-year persistent cluster. All the studied strains carried multidrug efflux-pumps genetic determinants (sugE, mdrl, lde, norM, mepA). CC121 also harbored the Tn6188 specific for tolerance to Benzalkonium Chloride. Only CC9 and CC121 carried a Stress Survival Islet and presented high-level cadmium resistance genes (cadA1C1) carried by different plasmids. They showed a greater biofilm production when compared with CC2. All the CC2 carried a full-length inlA while CC9 and CC121 presented a Premature Stop Codon mutation correlated with less virulence. The hypo-virulent clones CC9 and CC121 appeared the most adapted to food-processing environments; however, even the hyper-virulent clone CC2 warningly persisted for a long time. The identification of the main mechanisms promoting Lm persistence in a specific food processing plant is important to provide recommendations to Food Business Operators (FBOs) in order to remove or reduce resident Lm.

20.
Microb Genom ; 6(11)2020 11.
Article En | MEDLINE | ID: mdl-33030422

Ovine and caprine brucellosis, caused by Brucella melitensis, is one of the world's most widespread zoonoses and is a major cause of economic losses in domestic ruminant production. In Italy, the disease remains endemic in several southern provinces, despite an ongoing brucellosis eradication programme. In this study, we used whole-genome sequencing to detail the genetic diversity of circulating strains, and to examine the origins of the predominant sub-lineages of B. melitensis in Italy. We reconstructed a global phylogeny of B. melitensis, strengthened by 339 new whole-genome sequences, from Italian isolates collected from 2011 to 2018 as part of a national livestock surveillance programme. All Italian strains belonged to the West Mediterranean lineage, which further divided into two major clades that diverged roughly between the 5th and 7th centuries. We observed that Sicily serves as a brucellosis burden hotspot, giving rise to several distinct sub-lineages. More than 20 putative outbreak clusters of ovine and caprine brucellosis were identified, several of which persisted over the 8 year survey period despite an aggressive brucellosis eradication campaign. While the outbreaks in Central and Northern Italy were generally associated with introductions of single clones of B. melitensis and their subsequent dissemination within neighbouring territories, we observed weak geographical segregation of genotypes in the southern regions. Biovar determination, recommended in routine analysis of all Brucella strains by the World Organisation for Animal Health (OIE), could not discriminate among the four main global clades. This demonstrates a need for updating the guidelines used for monitoring B. melitensis transmission and spread, both at the national and international level, and to include whole-genome-based typing as the principal method for identification and tracing of brucellosis outbreaks.


Brucella melitensis/genetics , Brucellosis/epidemiology , Brucellosis/transmission , Cattle Diseases/epidemiology , Genome, Bacterial/genetics , Goat Diseases/epidemiology , Animals , Brucella melitensis/classification , Brucella melitensis/isolation & purification , Brucellosis/veterinary , Cattle , Cattle Diseases/microbiology , Genetic Variation , Goat Diseases/microbiology , Goats , Humans , Italy/epidemiology , Minisatellite Repeats/genetics , Multilocus Sequence Typing , Phylogeny , Sheep , Whole Genome Sequencing
...