Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biology (Basel) ; 12(9)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37759671

RESUMEN

Understanding diets and structural food webs are keys to the apprehension of ecological communities, upon which conservation and management biology are based. The understanding of grazing and habitat choice for waterfowl is one of the most important topics for avian ecologists today and can, to some degree, be answered by dietary analysis. Droppings collected from four waterfowl, the Eurasian wigeon (Anas penelope), Greylag goose (Anser anser), pink-footed goose (Anser brachyrhynchus) and Barnacle goose (Branta leucopsis) in Vejlerne (Denmark), were analysed microscopically and through eDNA metabarcoding with the use of next generation sequencing (NGS) to accumulate knowledge about the diet of these waterfowl. In total, 120 dropping samples were microscopically analysed, of which the eDNA metabarcoding analysis was done on 79 samples. The prey items were identified according to the taxonomic level of species, and a qualitative method, frequency of occurrence (FO) and FO calculated as a percentage, was used in order to compare the results from the two methods. As neither of the methods was able to encompass all species discovered when combining the two methods, it was concluded in this study that the two methods can support each other in a dietary analysis of waterfowl, but not replace one another.

2.
J Environ Manage ; 337: 117719, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36948148

RESUMEN

Ecosystem engineering species, such as beavers, may help the restoration of biodiversity. Through the building of dams and lodges and altering the natural hydrology, beavers change the habitat structure and create multiple habitats that facilitate a wide variety of other organisms including terrestrial invertebrate communities. Here we study the effect of beaver reintroduction in Klosterheden in Denmark on biomass of flying invertebrates and diversity of moths. Further, aerial photos were used to assess riparian structure and productivity using the normalized difference vegetation index (NDVI). Our findings show that the presence of beavers affected flying invertebrate biomass, but that this was dependent on time of the year. Further, a strong effect of presence of beavers was found on diversity of moths. The results also show an increase in vegetation productivity and structural heterogeneity at sites with presence of beavers. Overall, our results demonstrate the importance of beavers as important ecosystem engineers that affect invertebrate species composition and abundance, as well as riparian structure and productivity.


Asunto(s)
Ecosistema , Roedores , Animales , Biodiversidad , Invertebrados , Insectos
3.
J Environ Manage ; 300: 113637, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34521006

RESUMEN

The succession-driven reed bed habitat hosts a unique flora and fauna including several endangered invertebrate species. Reed beds can be managed through commercial winter harvest, with implications for reed bed conservation. However, the effects of winter harvest on the invertebrate community are not well understood and vary across studies and taxonomic levels. The aim of this study was to investigate the effects of reed harvest on invertebrate communities. Ground-dwelling and aerial invertebrates were continuously sampled for 10 weeks in the largest coherent reed bed of Scandinavia in order to assess how time since last reed harvest (0, 3, and 25-years) influences invertebrate biomass, biodiversity and community structure across taxonomic levels. Biomass was measured and all specimens were sorted to order level, and Coleoptera was even sorted to species level. The invertebrate community showed distinct compositional differences across the three reed bed ages. Furthermore, biomass of both aerial and ground-dwelling invertebrates was highest in the age-0 reed bed and lowest in the age-25 reed bed. Generally, biodiversity showed an opposite trend with the highest richness and diversity in the age-25 reed bed. We conclude that it is possible to ensure high insect biomass and diversity by creating a mosaic of reed bed of different ages through small-scale harvest in the largest coherent reed bed in Scandinavia. The youngest red beds support a high invertebrate biomass whereas the oldest reed beds support a high biodiversity. Collectively, this elevate our understanding of reed harvest and the effects it has on the invertebrate communities, and might aid in future reed bed management and restoration.


Asunto(s)
Biodiversidad , Invertebrados , Animales , Biomasa , Ecosistema , Insectos
4.
Ecol Evol ; 7(24): 10987-11001, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29299275

RESUMEN

The agricultural scene has changed over the past decades, resulting in a declining population trend in many species. It is therefore important to determine the factors that the individual species depend on in order to understand their decline. The landscape changes have also resulted in habitat fragmentation, turning once continuous populations into metapopulations. It is thus increasingly important to estimate both the number of individuals it takes to create a genetically viable population and the population trend. Here, population viability analysis and habitat suitability modeling were used to estimate population viability and future prospects across Europe of the Little Owl Athene noctua, a widespread species associated with agricultural landscapes. The results show a high risk of population declines over the coming 100 years, especially toward the north of Europe, whereas populations toward the southeastern part of Europe have a greater probability of persistence. In order to be considered genetically viable, individual populations must count 1,000-30,000 individuals. As Little Owl populations of several countries count <30,000, and many isolated populations in northern Europe count <1,000 individuals, management actions resulting in exchange of individuals between populations or even countries are probably necessary to prevent losing <1% genetic diversity over a 100-year period. At a continental scale, a habitat suitability analysis suggested Little Owl to be affected positively by increasing temperatures and urban areas, whereas an increased tree cover, an increasing annual rainfall, grassland, and sparsely vegetated areas affect the presence of the owl negatively. However, the low predictive power of the habitat suitability model suggests that habitat suitability might be better explained at a smaller scale.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA