Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 15 de 15
1.
Diabetologia ; 67(7): 1386-1398, 2024 Jul.
Article En | MEDLINE | ID: mdl-38662135

AIMS/HYPOTHESIS: Exercise has a profound effect on insulin sensitivity in skeletal muscle. The euglycaemic-hyperinsulinaemic clamp (EHC) is the gold standard for assessment of insulin sensitivity but it does not reflect the hyperglycaemia that occurs after eating a meal. In previous EHC investigations, it has been shown that the interstitial glucose concentration in muscle is decreased to a larger extent in previously exercised muscle than in rested muscle. This suggests that previously exercised muscle may increase its glucose uptake more than rested muscle if glucose supply is increased by hyperglycaemia. Therefore, we hypothesised that the exercise-induced increase in muscle insulin sensitivity would appear greater after eating a meal than previously observed with the EHC. METHODS: Ten recreationally active men performed dynamic one-legged knee extensor exercise for 1 h. Following this, both femoral veins and one femoral artery were cannulated. Subsequently, 4 h after exercise, a solid meal followed by two liquid meals were ingested over 1 h and glucose uptake in the two legs was measured for 3 h. Muscle biopsies from both legs were obtained before the meal test and 90 min after the meal test was initiated. Data obtained in previous studies using the EHC (n=106 participants from 13 EHC studies) were used for comparison with the meal-test data obtained in this study. RESULTS: Plasma glucose and insulin peaked 45 min after initiation of the meal test. Following the meal test, leg glucose uptake and glucose clearance increased twice as much in the exercised leg than in the rested leg; this difference is twice as big as that observed in previous investigations using EHCs. Glucose uptake in the rested leg plateaued after 15 min, alongside elevated muscle glucose 6-phosphate levels, suggestive of compromised muscle glucose metabolism. In contrast, glucose uptake in the exercised leg plateaued 45 min after initiation of the meal test and there were no signs of compromised glucose metabolism. Phosphorylation of the TBC1 domain family member 4 (TBC1D4; p-TBC1D4Ser704) and glycogen synthase activity were greater in the exercised leg compared with the rested leg. Muscle interstitial glucose concentration increased with ingestion of meals, although it was 16% lower in the exercised leg than in the rested leg. CONCLUSIONS/INTERPRETATION: Hyperglycaemia after meal ingestion results in larger differences in muscle glucose uptake between rested and exercised muscle than previously observed during EHCs. These findings indicate that the ability of exercise to increase insulin-stimulated muscle glucose uptake is even greater when evaluated with a meal test than has previously been shown with EHCs.


Blood Glucose , Exercise , Glucose Clamp Technique , Insulin Resistance , Insulin , Meals , Muscle, Skeletal , Humans , Male , Exercise/physiology , Muscle, Skeletal/metabolism , Insulin Resistance/physiology , Adult , Blood Glucose/metabolism , Insulin/metabolism , Insulin/blood , Young Adult , Meals/physiology
2.
Sci Adv ; 9(32): eadf7119, 2023 08 09.
Article En | MEDLINE | ID: mdl-37556547

Obesity and type 2 diabetes (T2D) are growing health challenges with unmet treatment needs. Traf2- and NCK-interacting protein kinase (TNIK) is a recently identified obesity- and T2D-associated gene with unknown functions. We show that TNIK governs lipid and glucose homeostasis in Drosophila and mice. Loss of the Drosophila ortholog of TNIK, misshapen, altered the metabolite profiles and impaired de novo lipogenesis in high sugar-fed larvae. Tnik knockout mice exhibited hyperlocomotor activity and were protected against diet-induced fat expansion, insulin resistance, and hepatic steatosis. The improved lipid profile of Tnik knockout mice was accompanied by enhanced skeletal muscle and adipose tissue insulin-stimulated glucose uptake and glucose and lipid handling. Using the T2D Knowledge Portal and the UK Biobank, we observed associations of TNIK variants with blood glucose, HbA1c, body mass index, body fat percentage, and feeding behavior. These results define an untapped paradigm of TNIK-controlled glucose and lipid metabolism.


Insulin Resistance , Lipid Metabolism , Obesity , Protein Serine-Threonine Kinases , Animals , Mice , Diabetes Mellitus, Type 2/genetics , Glucose/metabolism , Lipids , Liver/metabolism , Mice, Inbred C57BL , Mice, Knockout , Obesity/genetics , Obesity/metabolism , Protein Serine-Threonine Kinases/metabolism
3.
Diabetes ; 72(10): 1397-1408, 2023 10 01.
Article En | MEDLINE | ID: mdl-37506328

Exercise increases muscle glucose uptake independently of insulin signaling and represents a cornerstone for the prevention of metabolic disorders. Pharmacological activation of the exercise-responsive AMPK in skeletal muscle has been proven successful as a therapeutic approach to treat metabolic disorders by improving glucose homeostasis through the regulation of muscle glucose uptake. However, conflicting observations cloud the proposed role of AMPK as a necessary regulator of muscle glucose uptake during exercise. We show that glucose uptake increases in human skeletal muscle in the absence of AMPK activation during exercise and that exercise-stimulated AMPKγ3 activity strongly correlates to muscle glucose uptake in the postexercise period. In AMPKγ3-deficient mice, muscle glucose uptake is normally regulated during exercise and contractions but impaired in the recovery period from these stimuli. Impaired glucose uptake in recovery from exercise and contractions is associated with a lower glucose extraction, which can be explained by a diminished permeability to glucose and abundance of GLUT4 at the muscle plasma membrane. As a result, AMPKγ3 deficiency impairs muscle glycogen resynthesis following exercise. These results identify a physiological function of the AMPKγ3 complex in human and rodent skeletal muscle that regulates glucose uptake in recovery from exercise to recapture muscle energy stores. ARTICLE HIGHLIGHTS: Exercise-induced activation of AMPK in skeletal muscle has been proposed to regulate muscle glucose uptake in recovery from exercise. This study investigated whether the muscle-specific AMPKγ3-associated heterotrimeric complex was involved in regulating muscle glucose metabolism in recovery from exercise. The findings support that exercise-induced activation of the AMPKγ3 complex in human and mouse skeletal muscle enhances glucose uptake in recovery from exercise via increased translocation of GLUT4 to the plasma membrane. This work uncovers the physiological role of the AMPKγ3 complex in regulating muscle glucose uptake that favors replenishment of the muscle cellular energy stores.


AMP-Activated Protein Kinases , Exercise , Glucose , Animals , Humans , Mice , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Glucose/metabolism , Glucose Transporter Type 4/metabolism , Glycogen/metabolism , Insulin/metabolism , Muscle, Skeletal/metabolism , Exercise/physiology
4.
Proc Natl Acad Sci U S A ; 120(27): e2211041120, 2023 07 04.
Article En | MEDLINE | ID: mdl-37364105

The molecular events governing skeletal muscle glucose uptake have pharmacological potential for managing insulin resistance in conditions such as obesity, diabetes, and cancer. With no current pharmacological treatments to target skeletal muscle insulin sensitivity, there is an unmet need to identify the molecular mechanisms that control insulin sensitivity in skeletal muscle. Here, the Rho guanine dissociation inhibitor α (RhoGDIα) is identified as a point of control in the regulation of insulin sensitivity. In skeletal muscle cells, RhoGDIα interacted with, and thereby inhibited, the Rho GTPase Rac1. In response to insulin, RhoGDIα was phosphorylated at S101 and Rac1 dissociated from RhoGDIα to facilitate skeletal muscle GLUT4 translocation. Accordingly, siRNA-mediated RhoGDIα depletion increased Rac1 activity and elevated GLUT4 translocation. Consistent with RhoGDIα's inhibitory effect, rAAV-mediated RhoGDIα overexpression in mouse muscle decreased insulin-stimulated glucose uptake and was detrimental to whole-body glucose tolerance. Aligning with RhoGDIα's negative role in insulin sensitivity, RhoGDIα protein content was elevated in skeletal muscle from insulin-resistant patients with type 2 diabetes. These data identify RhoGDIα as a clinically relevant controller of skeletal muscle insulin sensitivity and whole-body glucose homeostasis, mechanistically by modulating Rac1 activity.


Diabetes Mellitus, Type 2 , Insulin Resistance , rho Guanine Nucleotide Dissociation Inhibitor alpha , Animals , Mice , Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Insulin/metabolism , Muscle, Skeletal/metabolism , rac1 GTP-Binding Protein/metabolism , rho Guanine Nucleotide Dissociation Inhibitor alpha/metabolism
5.
Diabetes ; 72(7): 857-871, 2023 07 01.
Article En | MEDLINE | ID: mdl-37074686

The ability of insulin to stimulate glucose uptake in skeletal muscle is important for whole-body glycemic control. Insulin-stimulated skeletal muscle glucose uptake is improved in the period after a single bout of exercise, and accumulating evidence suggests that phosphorylation of TBC1D4 by the protein kinase AMPK is the primary mechanism responsible for this phenomenon. To investigate this, we generated a TBC1D4 knock-in mouse model with a serine-to-alanine point mutation at residue 711 that is phosphorylated in response to both insulin and AMPK activation. Female TBC1D4-S711A mice exhibited normal growth and eating behavior as well as intact whole-body glycemic control on chow and high-fat diets. Moreover, muscle contraction increased glucose uptake, glycogen utilization, and AMPK activity similarly in wild-type and TBC1D4-S711A mice. In contrast, improvements in whole-body and muscle insulin sensitivity after exercise and contractions were only evident in wild-type mice and occurred concomitantly with enhanced phosphorylation of TBC1D4-S711. These results provide genetic evidence to support that TBC1D4-S711 serves as a major point of convergence for AMPK- and insulin-induced signaling that mediates the insulin-sensitizing effect of exercise and contractions on skeletal muscle glucose uptake.


Glucose , Insulin , Female , Mice , Animals , Insulin/pharmacology , Insulin/metabolism , Glucose/metabolism , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Muscle, Skeletal/metabolism , Insulin, Regular, Human/pharmacology , Phosphorylation , Muscle Contraction
6.
Physiol Rep ; 10(4): e15183, 2022 02.
Article En | MEDLINE | ID: mdl-35224890

The cortical cytoskeleton, consisting of the cytoplasmic actin isoforms ß and/or γ-actin, has been implicated in insulin-stimulated GLUT4 translocation and glucose uptake in muscle and adipose cell culture. Furthermore, transgenic inhibition of multiple actin-regulating proteins in muscle inhibits insulin-stimulated muscle glucose uptake. The current study tested if γ-actin was required for insulin-stimulated glucose uptake in mouse skeletal muscle. Based on our previously reported age-dependent phenotype in muscle-specific ß-actin gene deletion (-/- ) mice, we included cohorts of growing 8-14 weeks old and mature 18-32 weeks old muscle-specific γ-actin-/- mice or wild-type littermates. In growing mice, insulin significantly increased the glucose uptake in slow-twitch oxidative soleus and fast-twitch glycolytic EDL muscles from wild-type mice, but not γ-actin-/- . In relative values, the maximal insulin-stimulated glucose uptake was reduced by ~50% in soleus and by ~70% in EDL muscles from growing γ-actin-/- mice compared to growing wild-type mice. In contrast, the insulin-stimulated glucose uptake responses in mature adult γ-actin-/- soleus and EDL muscles were indistinguishable from the responses in wild-type muscles. Mature adult insulin-stimulated phosphorylations on Akt, p70S6K, and ULK1 were not significantly affected by genotype. Hence, insulin-stimulated muscle glucose uptake shows an age-dependent impairment in young growing but not in fully grown γ-actin-/- mice, bearing phenotypic resemblance to ß-actin-/- mice. Overall, γ-actin does not appear required for insulin-stimulated muscle glucose uptake in adulthood. Furthermore, our data emphasize the need to consider the rapid growth of young mice as a potential confounder in transgenic mouse phenotyping studies.


Actins , Insulin , Actins/metabolism , Animals , Gene Deletion , Glucose/metabolism , Glucose Transporter Type 4/genetics , Glucose Transporter Type 4/metabolism , Insulin/metabolism , Insulin/pharmacology , Mice , Mice, Transgenic , Muscle, Skeletal/metabolism
7.
Am J Physiol Endocrinol Metab ; 322(1): E63-E73, 2022 01 01.
Article En | MEDLINE | ID: mdl-34866401

In mice, exercise is suggested to activate the mechanistic target of rapamycin complex 2 (mTORC2) in skeletal muscle, and mTORC2 is required for normal muscle glucose uptake during exercise. Whether this translates to human skeletal muscle and what signaling pathways facilitate the exercise-induced mTORC2 activation is unknown. We herein tested the hypothesis that exercise increases mTORC2 activity in human skeletal muscle and investigated if ß2-adrenergic receptor (AR) activation mediates exercise-induced mTORC2 activation. We examined several mTORC2 activity readouts (p-NDRG1 Thr346, p-Akt Ser473, p-mTOR S2481, and p-Akt Thr450) in human skeletal muscle biopsies after uphill walking or cycling exercise. In mouse muscles, we assessed mTORC2 activity readouts following acute activation of muscle ß2-adrenergic or GS signaling and during in vivo and ex vivo muscle contractions. Exercise increased phosphorylation of NDRG1 Thr346 in human soleus, gastrocnemius, and vastus lateralis muscle, without changing p-Akt Ser473, p-Akt Thr450, and p-mTOR Ser2481. In mouse muscle, stimulation of ß2-adrenergic or GS signaling and ex vivo contractions failed to increase p-NDRG1 Thr346, whereas in vivo contractions were sufficient to induce p-NDRG1 Thr346. In conclusion, the mTORC2 activity readout p-NDRG1 Thr346 is a novel exercise-responsive signaling protein in human skeletal muscle. Notably, contraction-induced p-NDRG1 Thr346 appears to require a systemic factor. Unlike exercise, and in contrast to published data obtained in cultured muscles cells, stimulation of ß2-adrenergic signaling is not sufficient to trigger NDRG1 phosphorylation in mature mouse skeletal muscle.NEW & NOTEWORTHY The mTORC2 readout p-NDRG Thr346 is a novel exercise-responsive protein in human skeletal muscle. ß2-AR and GS signaling are not sufficient to induce mTORC2 signaling in adult muscle. In vivo, but not ex vivo, contraction induced p-NDRG Thr346, which indicates requirement of a systemic factor for exercise-induced mTORC2 activation.


Cell Cycle Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Muscle, Skeletal/metabolism , Signal Transduction/physiology , Walking/physiology , Adult , Animals , Cells, Cultured , Female , Fibroblasts/metabolism , Healthy Volunteers , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Muscle Contraction/physiology , Phosphorylation/physiology , Receptors, Adrenergic, beta-2/metabolism , Young Adult
8.
Mol Metab ; 51: 101259, 2021 09.
Article En | MEDLINE | ID: mdl-34033941

OBJECTIVE: Skeletal muscle is an attractive target for blood glucose-lowering pharmacological interventions. Oral dosing of small molecule direct pan-activators of AMPK that bind to the allosteric drug and metabolite (ADaM) site, lowers blood glucose through effects in skeletal muscle. The molecular mechanisms responsible for this effect are not described in detail. This study aimed to illuminate the mechanisms by which ADaM-site activators of AMPK increase glucose uptake in skeletal muscle. Further, we investigated the consequence of co-stimulating muscles with two types of AMPK activators i.e., ADaM-site binding small molecules and the prodrug AICAR. METHODS: The effect of the ADaM-site binding small molecules (PF739 and 991), AICAR or co-stimulation with PF739 or 991 and AICAR on muscle glucose uptake was investigated ex vivo in m. extensor digitorum longus (EDL) excised from muscle-specific AMPKα1α2 as well as whole-body AMPKγ3-deficient mouse models. In vitro complex-specific AMPK activity was measured by immunoprecipitation and molecular signaling was assessed by western blotting in muscle lysate. To investigate the transferability of these studies, we treated diet-induced obese mice in vivo with PF739 and measured complex-specific AMPK activation in skeletal muscle. RESULTS: Incubation of skeletal muscle with PF739 or 991 increased skeletal muscle glucose uptake in a dose-dependent manner. Co-incubating PF739 or 991 with a maximal dose of AICAR increased glucose uptake to a greater extent than any of the treatments alone. Neither PF739 nor 991 increased AMPKα2ß2γ3 activity to the same extent as AICAR, while co-incubation led to potentiated effects on AMPKα2ß2γ3 activation. In muscle from AMPKγ3 KO mice, AICAR-stimulated glucose uptake was ablated. In contrast, the effect of PF739 or 991 on glucose uptake was not different between WT and AMPKγ3 KO muscles. In vivo PF739 treatment lowered blood glucose levels and increased muscle AMPKγ1-complex activity 2-fold, while AMPKα2ß2γ3 activity was not affected. CONCLUSIONS: ADaM-site binding AMPK activators increase glucose uptake independently of AMPKγ3. Co-incubation with PF739 or 991 and AICAR potentiates the effects on muscle glucose uptake and AMPK activation. In vivo, PF739 lowers blood glucose and selectively activates muscle AMPKγ1-complexes. Collectively, this suggests that pharmacological activation of AMPKγ1-containing complexes in skeletal muscle can increase glucose uptake and can lead to blood glucose lowering.


AMP-Activated Protein Kinases/metabolism , Aminoimidazole Carboxamide/analogs & derivatives , Blood Glucose/drug effects , Muscle, Skeletal/metabolism , Obesity/drug therapy , Ribonucleotides/pharmacology , AMP-Activated Protein Kinases/genetics , Aminoimidazole Carboxamide/pharmacology , Aminoimidazole Carboxamide/therapeutic use , Animals , Blood Glucose/metabolism , Diet, High-Fat/adverse effects , Disease Models, Animal , Female , Humans , Mice , Mice, Knockout , Muscle, Skeletal/drug effects , Obesity/blood , Obesity/etiology , Obesity/metabolism , Phosphorylation/drug effects , Ribonucleotides/therapeutic use , Signal Transduction/drug effects
9.
J Physiol ; 598(23): 5351-5377, 2020 12.
Article En | MEDLINE | ID: mdl-32844438

KEY POINTS: Muscle-specific genetic ablation of p21-activated kinase (PAK)2, but not whole-body PAK1 knockout, impairs glucose tolerance in mice. Insulin-stimulated glucose uptake partly relies on PAK2 in glycolytic extensor digitorum longus muscle By contrast to previous reports, PAK1 is dispensable for insulin-stimulated glucose uptake in mouse muscle. ABSTRACT: The group I p21-activated kinase (PAK) isoforms PAK1 and PAK2 are activated in response to insulin in skeletal muscle and PAK1/2 signalling is impaired in insulin-resistant mouse and human skeletal muscle. Interestingly, PAK1 has been suggested to be required for insulin-stimulated glucose transporter 4 translocation in mouse skeletal muscle. Therefore, the present study aimed to examine the role of PAK1 in insulin-stimulated muscle glucose uptake. The pharmacological inhibitor of group I PAKs, IPA-3 partially reduced (-20%) insulin-stimulated glucose uptake in isolated mouse soleus muscle (P < 0.001). However, because there was no phenotype with genetic ablation of PAK1 alone, consequently, the relative requirement for PAK1 and PAK2 in whole-body glucose homeostasis and insulin-stimulated muscle glucose uptake was investigated. Whole-body respiratory exchange ratio was largely unaffected in whole-body PAK1 knockout (KO), muscle-specific PAK2 KO and in mice with combined whole-body PAK1 KO and muscle-specific PAK2 KO. By contrast, glucose tolerance was mildly impaired in mice lacking PAK2 specifically in muscle, but not PAK1 KO mice. Moreover, while PAK1 KO muscles displayed normal insulin-stimulated glucose uptake in vivo and in isolated muscle, insulin-stimulated glucose uptake was slightly reduced in isolated glycolytic extensor digitorum longus muscle lacking PAK2 alone (-18%) or in combination with PAK1 KO (-12%) (P < 0.05). In conclusion, glucose tolerance and insulin-stimulated glucose uptake partly rely on PAK2 in glycolytic mouse muscle, whereas PAK1 is dispensable for whole-body glucose homeostasis and insulin-stimulated muscle glucose uptake.


Insulin , p21-Activated Kinases , Animals , Biological Transport , Glucose/metabolism , Insulin/metabolism , Mice , Muscle, Skeletal/metabolism , p21-Activated Kinases/metabolism
10.
Physiol Rep ; 8(12): e14460, 2020 06.
Article En | MEDLINE | ID: mdl-32597567

AIM: Muscle contraction stimulates skeletal muscle glucose transport. Since it occurs independently of insulin, it is an important alternative pathway to increase glucose transport in insulin-resistant states, but the intracellular signaling mechanisms are not fully understood. Muscle contraction activates group I p21-activated kinases (PAKs) in mouse and human skeletal muscle. PAK1 and PAK2 are downstream targets of Rac1, which is a key regulator of contraction-stimulated glucose transport. Thus, PAK1 and PAK2 could be downstream effectors of Rac1 in contraction-stimulated glucose transport. The current study aimed to test the hypothesis that PAK1 and/or PAK2 regulate contraction-induced glucose transport. METHODS: Glucose transport was measured in isolated soleus and extensor digitorum longus (EDL) mouse skeletal muscle incubated either in the presence or absence of a pharmacological inhibitor (IPA-3) of group I PAKs or originating from whole-body PAK1 knockout, muscle-specific PAK2 knockout or double whole-body PAK1 and muscle-specific PAK2 knockout mice. RESULTS: IPA-3 attenuated (-22%) the increase in glucose transport in response to electrically stimulated contractions in soleus and EDL muscle. PAK1 was dispensable for contraction-stimulated glucose transport in both soleus and EDL muscle. Lack of PAK2, either alone (-13%) or in combination with PAK1 (-14%), partly reduced contraction-stimulated glucose transport compared to control littermates in EDL, but not soleus muscle. CONCLUSION: Contraction-stimulated glucose transport in isolated glycolytic mouse EDL muscle is partly dependent on PAK2, but not PAK1.


Glucose/metabolism , Insulin/metabolism , Muscle, Skeletal/metabolism , p21-Activated Kinases/metabolism , Animals , Biological Transport , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Animal , Muscle Contraction , Signal Transduction , p21-Activated Kinases/genetics
11.
Physiol Rep ; 7(23): e14307, 2019 12.
Article En | MEDLINE | ID: mdl-31833226

5´AMP-activated protein kinase (AMPK) is a mediator of a healthy metabolic phenotype in skeletal muscle. Metformin may exacerbate the energy disturbances observed during exercise leading to enhanced AMPK activation, and these disturbances may provoke early muscular fatigue. We studied acute (1 day) and short-term (4 days) effects of metformin treatment on AMPK and its downstream signaling network, in healthy human skeletal muscle and adipose tissue at rest and during exercise, by applying a randomized blinded crossover study design in 10 lean men. Muscle and fat biopsies were obtained before and after the treatment period at rest and after a single bout of exercise. Metformin treat ment elicited peak plasma and muscle metformin concentrations of 31 µM and 11 µM, respectively. Neither of the treatments affected AMPK activity in skeletal muscle and adipose at rest or during exercise. In contrast, whole-body stress during exercise was elevated as indicated by increased plasma lactate and adrenaline concentrations as well as increased heart rate and rate of perceived exertion. Also whole-body insulin sensitivity was enhanced by 4 days metformin treatment, that is reduced fasting plasma insulin and HOMA-IR. In conclusion, acute and short-term metformin treatment does not affect energy homeostasis and AMPK activation at rest or during exercise in skeletal muscle and adipose tissue of healthy subjects. However, metformin treatment is accompanied by slightly enhanced perceived exertion and whole-body stress which may provoke a lesser desire for physical activity in the metformin-treated patients.


Energy Metabolism , Exercise , Hypoglycemic Agents/pharmacology , Metformin/pharmacology , Muscle, Skeletal/drug effects , AMP-Activated Protein Kinase Kinases , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Adult , Epinephrine/blood , Humans , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/pharmacokinetics , Insulin/blood , Lactic Acid/blood , Male , Metformin/administration & dosage , Metformin/pharmacokinetics , Muscle, Skeletal/metabolism , Protein Kinases/metabolism
12.
J Clin Endocrinol Metab ; 104(5): 1841-1854, 2019 05 01.
Article En | MEDLINE | ID: mdl-30544235

CONTEXT: Skeletal muscle molecular mechanisms underlying insulin resistance in women with polycystic ovary syndrome (PCOS) are poorly understood. OBJECTIVE: To provide insight into mechanisms regulating skeletal muscle insulin resistance in women who are lean with PCOS. PARTICIPANTS AND METHODS: A hyperinsulinemic-euglycemic clamp with skeletal muscle biopsies was performed. Thirteen women who are lean who have hyperandrogenism and PCOS and seven age- and body mass index-matched healthy control subjects were enrolled. Skeletal muscle protein expression and phosphorylation were analyzed by Western blotting and intramuscular lipid content was measured by thin-layer chromatography. RESULTS: Women with PCOS had 25% lower whole-body insulin sensitivity and 40% lower plasma adiponectin concentration than in control subjects. Intramuscular triacylglycerol, sn-1.3 diacylglycerol, and ceramide contents in skeletal muscle were higher (40%, 50%, and 300%, respectively) in women with PCOS than in control subjects. Activation of insulin signaling did not differ between groups. In women with PCOS, the insulin-stimulated glucose oxidation was reduced and insulin-stimulated dephosphorylation of pyruvate dehydrogenase (PDH) Ser293 was absent. AMP-activated protein kinase (AMPK) α2 protein expression and basal Thr172 phosphorylation were 45% and 50% lower in women with PCOS than in control subjects, respectively. CONCLUSIONS: Whole-body insulin resistance in women who are lean who have hyperandrogenism and PCOS was not related to changes in the proximal part of the insulin signaling cascade in skeletal muscle despite lipid accumulation. Rather, reduced insulin sensitivity was potentially related to plasma adiponectin levels playing a modulating role in human skeletal muscle via AMPK. Furthermore, abnormal PDH regulation may contribute to reduced whole-body metabolic flexibility and thereby insulin resistance.


Hyperandrogenism/physiopathology , Insulin Resistance , Insulin/metabolism , Muscle, Skeletal/physiopathology , Polycystic Ovary Syndrome/physiopathology , Thinness/physiopathology , AMP-Activated Protein Kinases/metabolism , Adiponectin/metabolism , Adult , Biomarkers/metabolism , Body Mass Index , Case-Control Studies , Female , Follow-Up Studies , Glucose Clamp Technique , Humans , Ketone Oxidoreductases/metabolism , Male , Phosphorylation , Prognosis
13.
J Diabetes Complications ; 28(1): 71-8, 2014.
Article En | MEDLINE | ID: mdl-24120282

AIMS: We investigated whether physical inactivity could unmask defects in insulin and AMPK signaling in low birth weight (LBW) subjects. METHODS: Twenty LBW and 20 normal birth weight (NBW) subjects were investigated using the euglycemic-hyperinsulinemic clamp with excision of skeletal muscle biopsies pre and post 9days of bed rest. Employing Western blotting, we investigated skeletal muscle Akt, AS160, GLUT4, and AMPK signaling. RESULTS: Peripheral insulin action was similar in the two groups and was decreased to the same extent post bed rest. Insulin and AMPK signaling was unaffected by bed rest in NBW individuals. LBW subjects showed decreased insulin-stimulated Akt phosphorylation and increased AMPK α1 and γ3 protein expression post bed rest. Insulin response of AS160 phosphorylation was lower in LBW subjects both pre and post bed rest. CONCLUSIONS: Bed rest-induced insulin resistance is not explained by impaired muscle insulin or AMPK signaling in subjects with or without LBW. Lower muscle insulin signaling in LBW subjects post bed rest despite similar degree of insulin resistance as seen in controls may to some extent support the idea that LBW subjects are at higher risk of developing type 2 diabetes when being physically inactive.


Birth Weight/physiology , Insulin/metabolism , Motor Activity/physiology , Muscle, Skeletal/metabolism , Adult , Case-Control Studies , Humans , Infant, Newborn , Male , Registries , Sedentary Behavior , Signal Transduction , Young Adult
14.
J Clin Endocrinol Metab ; 93(9): 3618-26, 2008 Sep.
Article En | MEDLINE | ID: mdl-18544618

CONTEXT: Insulin resistance is a major risk factor for type 2 diabetes in women with polycystic ovary syndrome (PCOS). The molecular mechanisms underlying reduced insulin-mediated glycogen synthesis in skeletal muscle of patients with PCOS have not been established. SUBJECTS AND METHODS: We investigated protein content, activity, and phosphorylation of glycogen synthase (GS) and its major upstream inhibitor, GS kinase (GSK)-3 in skeletal muscle biopsies from 24 PCOS patients (before treatment) and 14 matched control subjects and 10 PCOS patients after 16 wk treatment with pioglitazone. All were metabolically characterized by euglycemic-hyperinsulinemic clamps and indirect calorimetry. RESULTS: Reduced insulin-mediated glucose disposal (P < 0.05) was associated with a lower insulin-stimulated GS activity in PCOS patients (P < 0.05), compared with controls. This was, in part, explained by absent insulin-mediated dephosphorylation of GS at the NH2-terminal sites 2+2a, whereas dephosphorylation at the COOH-terminal sites 3a+3b was intact in PCOS subjects (P < 0.05). Consistently, multiple linear regression analysis showed that insulin activation of GS was dependent on dephosphorylation of sites 3a+3b in women with PCOS. No significant abnormalities in GSK-3alpha or -3beta were found in PCOS subjects. Pioglitazone treatment improved insulin-stimulated glucose metabolism and GS activity in PCOS (all P < 0.05) and restored the ability of insulin to dephosphorylate GS at sites 2 and 2a. CONCLUSIONS: Impaired insulin activation of GS including absent dephosphorylation at sites 2+2a contributes to insulin resistance in skeletal muscle in PCOS. The ability of pioglitazone to enhance insulin sensitivity, in part, involves improved insulin action on GS activity and dephosphorylation at NH2-terminal sites.


Glycogen Synthase/metabolism , Insulin Resistance , Muscle, Skeletal/drug effects , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/metabolism , Thiazolidinediones/therapeutic use , Adult , Biopsy , Double-Blind Method , Female , Glucose/metabolism , Glycogen/metabolism , Humans , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Insulin/metabolism , Muscle, Skeletal/enzymology , Muscle, Skeletal/metabolism , Phosphorylation/drug effects , Pioglitazone , Placebos , Polycystic Ovary Syndrome/enzymology , Polycystic Ovary Syndrome/pathology , Thiazolidinediones/pharmacology
15.
Diabetes ; 57(2): 357-66, 2008 Feb.
Article En | MEDLINE | ID: mdl-17977950

OBJECTIVE: Insulin resistance in skeletal muscle is a major risk factor for type 2 diabetes in women with polycystic ovary syndrome (PCOS). However, the molecular mechanisms underlying skeletal muscle insulin resistance and the insulin-sensitizing effect of thiazolidinediones in PCOS in vivo are less well characterized. RESEARCH DESIGN AND METHODS: We determined molecular mediators of insulin signaling to glucose transport in skeletal muscle biopsies of 24 PCOS patients and 14 matched control subjects metabolically characterized by euglycemic-hyperinsulinemic clamps and indirect calorimetry, and we examined the effect of 16 weeks of treatment with pioglitazone in PCOS patients. RESULTS: Impaired insulin-mediated total (R(d)) oxidative and nonoxidative glucose disposal (NOGD) was paralleled by reduced insulin-stimulated Akt phosphorylation at Ser473 and Thr308 and AS160 phosphorylation in muscle of PCOS patients. Akt phosphorylation at Ser473 and Thr308 correlated positively with R(d) and NOGD in the insulin-stimulated state. Serum free testosterone was inversely related to insulin-stimulated R(d) and NOGD in PCOS. Importantly, the pioglitazone-mediated improvement in insulin-stimulated glucose metabolism, which did not fully reach normal levels, was accompanied by normalization of insulin-mediated Akt phosphorylation at Ser473 and Thr308 and AS160 phosphorylation. AMPK activity and phosphorylation were similar in the two groups and did not respond to pioglitazone in PCOS patients. CONCLUSIONS: Impaired insulin signaling through Akt and AS160 in part explains insulin resistance at the molecular level in skeletal muscle in PCOS, and the ability of pioglitazone to enhance insulin sensitivity involves improved signaling through Akt and AS160. Moreover, our data provide correlative evidence that hyperandrogenism in PCOS may contribute to insulin resistance.


GTPase-Activating Proteins/metabolism , Insulin/pharmacology , Muscle, Skeletal/physiopathology , Polycystic Ovary Syndrome/physiopathology , Proto-Oncogene Proteins c-akt/metabolism , Thiazolidinediones/therapeutic use , Adult , Blood Glucose/drug effects , Blood Glucose/metabolism , Enzyme Activation/drug effects , Female , GTPase-Activating Proteins/drug effects , Glucose Clamp Technique , Humans , Hypoglycemic Agents/therapeutic use , Muscle, Skeletal/drug effects , Obesity , Phosphorylation , Pioglitazone , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/enzymology , Proto-Oncogene Proteins c-akt/drug effects , Reference Values
...