Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 12407, 2023 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-37524855

RESUMEN

Quantum sensors using solid state qubits have demonstrated outstanding sensitivity, beyond that possible using classical devices. In particular, those based on colour centres in diamond have demonstrated high sensitivity to magnetic field through exploiting the field-dependent emission of fluorescence under coherent control using microwaves. Given the highly biocompatible nature of diamond, sensing from biological samples is a key interdisciplinary application. In particular, the microscopic-scale study of living systems can be possible through recording of temperature and biomagnetic field. In this work, we use such a quantum sensor to demonstrate such microscopic-scale recording of electrical activity from neurons in fragile living brain tissue. By recording weak magnetic field induced by ionic currents in mouse corpus callosum axons, we accurately recover signals from neuronal action potential propagation while demonstrating in situ pharmacology. Our sensor allows recording of the electrical activity in neural circuits, disruption of which can shed light on the mechanisms of disease emergence. Unlike existing techniques for recording activity, which can require potentially damaging direct interaction, our sensing is entirely passive and remote from the sample. Our results open a promising new avenue for the microscopic recording of neuronal signals, offering the eventual prospect of microscopic imaging of electrical activity in the living mammalian brain.


Asunto(s)
Encéfalo , Diamante , Animales , Ratones , Encéfalo/fisiología , Campos Magnéticos , Neuronas/fisiología , Fluorescencia , Mamíferos
2.
Phys Rev Lett ; 128(11): 110503, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35363012

RESUMEN

We present a protocol for transferring arbitrary continuous-variable quantum states into a few discrete-variable qubits and back. The protocol is deterministic and utilizes only two-mode Rabi-type interactions that are readily available in trapped-ion and superconducting circuit platforms. The inevitable errors caused by transferring an infinite-dimensional state into a finite-dimensional register are suppressed exponentially with the number of qubits. Furthermore, the encoded states exhibit robustness against noise, such as dephasing and amplitude damping, acting on the qubits. Our protocol thus provides a powerful and flexible tool for discrete-continuous hybrid quantum systems.

3.
Nat Commun ; 12(1): 5766, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34599186

RESUMEN

Engineered micro- and nanomechanical resonators with ultra-low dissipation constitute a promising platform for various quantum technologies and foundational research. Traditionally, the improvement of the resonator's performance through nanomechanical structural engineering has been driven by human intuition and insight. Such an approach is inefficient and leaves aside a plethora of unexplored mechanical designs that potentially achieve better performance. Here, we use a computer-aided inverse design approach known as topology optimization to structurally design mechanical resonators with optimized performance of the fundamental mechanical mode. Using the outcomes of this approach, we fabricate and characterize ultra-coherent nanomechanical resonators with, to the best of our knowledge, record-high Q ⋅ f products for their fundamental mode (where Q is the quality factor and f is the frequency). The proposed approach - which can also be used to improve phononic crystals and coupled-mode resonators - opens up a new paradigm for designing ultra-coherent micro- and nanomechanical resonators, enabling e.g. novel experiments in fundamental physics and extreme sensing.

4.
Front Neurosci ; 15: 643614, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054404

RESUMEN

Magnetometry based on nitrogen-vacancy (NV) centers in diamond is a novel technique capable of measuring magnetic fields with high sensitivity and high spatial resolution. With the further advancements of these sensors, they may open up novel approaches for the 2D imaging of neural signals in vitro. In the present study, we investigate the feasibility of NV-based imaging by numerically simulating the magnetic signal from the auditory pathway of a rodent brainstem slice (ventral cochlear nucleus, VCN, to the medial trapezoid body, MNTB) as stimulated by both electric and optic stimulation. The resulting signal from these two stimulation methods are evaluated and compared. A realistic pathway model was created based on published data of the neural morphologies and channel dynamics of the globular bushy cells in the VCN and their axonal projections to the principal cells in the MNTB. The pathway dynamics in response to optic and electric stimulation and the emitted magnetic fields were estimated using the cable equation. For simulating the optic stimulation, the light distribution in brain tissue was numerically estimated and used to model the optogenetic neural excitation based on a four state channelrhodopsin-2 (ChR2) model. The corresponding heating was also estimated, using the bio-heat equation and was found to be low (<2°C) even at excessively strong optic signals. A peak magnetic field strength of ∼0.5 and ∼0.1 nT was calculated from the auditory brainstem pathway after electrical and optical stimulation, respectively. By increasing the stimulating light intensity four-fold (far exceeding commonly used intensities) the peak magnetic signal strength only increased to 0.2 nT. Thus, while optogenetic stimulation would be favorable to avoid artefacts in the recordings, electric stimulation achieves higher peak fields. The present simulation study predicts that high-resolution magnetic imaging of the action potentials traveling along the auditory brainstem pathway will only be possible for next generation NV sensors. However, the existing sensors already have sufficient sensitivity to support the magnetic sensing of cumulated neural signals sampled from larger parts of the pathway, which might be a promising intermediate step toward further maturing this novel technology.

5.
Phys Rev Lett ; 126(15): 153602, 2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33929221

RESUMEN

Squeezed states of harmonic oscillators are a central resource for continuous-variable quantum sensing, computation, and communication. Here, we propose a method for the generation of very good approximations to highly squeezed vacuum states with low excess antisqueezing using only a few oscillator-qubit coupling gates through a Rabi-type interaction Hamiltonian. This interaction can be implemented with several different methods, which has previously been demonstrated in superconducting circuit and trapped-ion platforms. The protocol is compatible with other protocols manipulating quantum harmonic oscillators, thus facilitating scalable continuous-variable fault-tolerant quantum computation.

6.
Sci Rep ; 11(1): 2412, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33510264

RESUMEN

The ability to perform noninvasive and non-contact measurements of electric signals produced by action potentials is essential in biomedicine. A key method to do this is to remotely sense signals by the magnetic field they induce. Existing methods for magnetic field sensing of mammalian tissue, used in techniques such as magnetoencephalography of the brain, require cryogenically cooled superconducting detectors. These have many disadvantages in terms of high cost, flexibility and limited portability as well as poor spatial and temporal resolution. In this work we demonstrate an alternative technique for detecting magnetic fields generated by the current from action potentials in living tissue using nitrogen vacancy centres in diamond. With 50 pT/[Formula: see text] sensitivity, we show the first measurements of magnetic sensing from mammalian tissue with a diamond sensor using mouse muscle optogenetically activated with blue light. We show these proof of principle measurements can be performed in an ordinary, unshielded lab environment and that the signal can be easily recovered by digital signal processing techniques. Although as yet uncompetitive with probe electrophysiology in terms of sensitivity, we demonstrate the feasibility of sensing action potentials via magnetic field in mammals using a diamond quantum sensor, as a step towards microscopic imaging of electrical activity in a biological sample using nitrogen vacancy centres in diamond.


Asunto(s)
Técnicas Biosensibles , Diamante , Fenómenos Electrofisiológicos , Músculos/fisiología , Animales , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Campos Magnéticos , Relación Señal-Ruido
7.
Nat Commun ; 11(1): 2161, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32358531

RESUMEN

Thermal detectors are a cornerstone of infrared and terahertz technology due to their broad spectral range. These detectors call for efficient absorbers with a broad spectral response and minimal thermal mass. A common approach is based on impedance-matching the sheet resistance of a thin metallic film to half the free-space impedance. Thereby, one can achieve a wavelength-independent absorptivity of up to 50%. However, existing absorber films typically require a thickness of the order of tens of nanometers, which can significantly deteriorate the response of a thermal transducer. Here, we present the application of ultrathin gold (2 nm) on top of a surfactant layer of oxidized copper as an effective infrared absorber. An almost wavelength-independent and long-time stable absorptivity of 47(3)%, ranging from 2 µm to 20 µm, can be obtained. The presented absorber allows for a significant improvement of infrared/terahertz technologies in general and thermal detectors in particular.

8.
Opt Lett ; 45(3): 640-643, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32004272

RESUMEN

The four-component cat state represents a particularly useful quantum state for realizing fault-tolerant continuous variable quantum computing. While such encoding has been experimentally generated and employed in the microwave regime, the states have not yet been produced in the optical regime. Here, we propose a simple linear optical circuit combined with photon counters for the generation of such optical four-component cat states. This work might pave the way for the first experimental generation of fault-tolerant optical continuous variable quantum codes.

9.
Sci Rep ; 8(1): 4503, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29540789

RESUMEN

We suggest a novel approach for wide-field imaging of the neural network dynamics of brain slices that uses highly sensitivity magnetometry based on nitrogen-vacancy (NV) centers in diamond. In-vitro recordings in brain slices is a proven method for the characterization of electrical neural activity and has strongly contributed to our understanding of the mechanisms that govern neural information processing. However, this traditional approach only acquires signals from a few positions, which severely limits its ability to characterize the dynamics of the underlying neural networks. We suggest to extend its scope using NV magnetometry-based imaging of the neural magnetic fields across the slice. Employing comprehensive computational simulations and theoretical analyses, we determine the spatiotemporal characteristics of the neural fields and the required key performance parameters of an NV magnetometry-based imaging setup. We investigate how the technical parameters determine the achievable spatial resolution for an optimal 2D reconstruction of neural currents from the measured field distributions. Finally, we compare the imaging of neural slice activity with that of a single planar pyramidal cell. Our results suggest that imaging of slice activity will be possible with the upcoming generation of NV magnetic field sensors, while single-shot imaging of planar cell activity remains challenging.


Asunto(s)
Mapeo Encefálico , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Magnetometría , Red Nerviosa/diagnóstico por imagen , Imagen Óptica , Mapeo Encefálico/métodos , Hipocampo/diagnóstico por imagen , Hipocampo/fisiología , Campos Magnéticos , Magnetometría/métodos , Neuronas/fisiología , Imagen Óptica/métodos , Análisis Espacio-Temporal , Sinapsis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...