Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 103
1.
JSES Int ; 8(2): 282-286, 2024 Mar.
Article En | MEDLINE | ID: mdl-38464451

Background: To compare the complications and efficacy of pain relief of the interscalene anesthetic block using either a single-injection (SI) vs. a continuous, indwelling catheter (CIC) for arthroscopic rotator cuff repair surgery. Methods: Patients undergoing primary, arthroscopic rotator cuff repair without concomitant open procedure or biceps tenodesis were prospectively enrolled by 4 fellowship-trained sports medicine and shoulder surgeons. Patients received either a SI or CIC preoperatively based on surgeon preference. Patients were contacted by phone to complete a standard questionnaire on postoperative days (PODs) 1, 3, 7, 14, and 28. Patients were asked to rate the efficacy of their subjective pain relief (scale of 0-10), document issues with the catheter, describe analgesic usage, and report pharmacological and medical complications. The primary outcome was measured as complication rate. Postoperative narcotic use, patient satisfaction, and visual analog scale pain scores were measured as secondary outcomes. Results: Seventy patients were enrolled, 33 CIC patients (13 male, 20 female, mean age 61 ± 8 years) and 37 SI patients (20 male, 17 female, mean age 59 ± 10 years). There were significantly more injection/insertion site complications in the CIC group (48%) vs. the SI group (11%, P = .001). The incidence of motor weakness was higher in the CIC group on POD 1 (P = .034), but not at any subsequent time points. On POD 1, CIC patients had a clinically significantly lower pain score compared to SI (3.2 vs. 5.4; P = .020). Similar scores were observed at subsequent time points until POD 28, when CIC again had a lower pain score (0.8 vs. 2.7; P = .005). However, this did not reach clinical significance. All patients in both groups rated a satisfaction of 9 or 10 (scale 0-10) with the anesthesia provided by their nerve block. Conclusion: CIC interscalene nerve blocks had an increased risk for injection site complications and minor complications in the immediate postoperative period when using the CIC for arthroscopic rotator cuff repair without any concomitant open procedures. CIC blocks demonstrated clinically significant superior pain relief on POD 1 but were equal to SI blocks at every time point thereafter. Superior pain relief of CIC at POD 28 was not clinically significant. CIC catheters do not appear to markedly decrease the use of postoperative narcotics. Despite this trend in complication rates and pain scores, all patients in both groups were satisfied with their nerve block.

2.
JACS Au ; 3(12): 3345-3365, 2023 Dec 25.
Article En | MEDLINE | ID: mdl-38155643

Developing new antimicrobials as alternatives to conventional antibiotics has become an urgent race to eradicate drug-resistant bacteria and to save human lives. Conventionally, antimicrobial molecules are studied independently even though they can be cosecreted in vivo. In this research, we investigate two classes of naturally derived antimicrobials: sophorolipid (SL) esters as modified yeast-derived glycolipid biosurfactants that feature high biocompatibility and low production cost; piscidins, which are host defense peptides (HDPs) from fish. While HDPs such as piscidins target the membrane of pathogens, and thus result in low incidence of resistance, SLs are not well understood on a mechanistic level. Here, we demonstrate that combining SL-hexyl ester (SL-HE) with subinhibitory concentration of piscidins 1 (P1) and 3 (P3) stimulates strong antimicrobial synergy, potentiating a promising therapeutic window. Permeabilization assays and biophysical studies employing circular dichroism, NMR, mass spectrometry, and X-ray diffraction are performed to investigate the mechanism underlying this powerful synergy. We reveal four key mechanistic features underlying the synergistic action: (1) P1/3 binds to SL-HE aggregates, becoming α-helical; (2) piscidin-glycolipid assemblies synergistically accumulate on membranes; (3) SL-HE used alone or bound to P1/3 associates with phospholipid bilayers where it induces defects; (4) piscidin-glycolipid complexes disrupt the bilayer structure more dramatically and differently than either compound alone, with phase separation occurring when both agents are present. Overall, dramatic enhancement in antimicrobial activity is associated with the use of two membrane-active agents, with the glycolipid playing the roles of prefolding the peptide, coordinating the delivery of both agents to bacterial surfaces, recruiting the peptide to the pathogenic membranes, and supporting membrane disruption by the peptide. Given that SLs are ubiquitously and safely used in consumer products, the SL/peptide formulation engineered and mechanistically characterized in this study could represent fertile ground to develop novel synergistic agents against drug-resistant bacteria.

3.
JBMR Plus ; 7(11): e10819, 2023 Nov.
Article En | MEDLINE | ID: mdl-38025036

An increasing number of patients with type 2 diabetes (T2DM) will require total joint replacement (TJR) in the next decade. T2DM patients are at increased risk for TJR failure, but the mechanisms are not well understood. The current study used the Zucker Diabetic-Sprague Dawley (ZDSD) rat model of T2DM with Sprague Dawley (SPD) controls to investigate the effects of intramedullary implant placement on osseointegration, peri-implant bone structure and matrix composition, and fixation strength at 2 and 10 weeks post-implant placement. Postoperative inflammation was assessed with circulating MCP-1 and IL-10 2 days post-implant placement. In addition to comparing the two groups, stepwise linear regression modeling was performed to determine the relative contribution of glucose, cytokines, bone formation, bone structure, and bone matrix composition on osseointegration and implant fixation strength. ZDSD rats had decreased peri-implant bone formation and reduced trabecular bone volume per total volume compared with SPD controls. The osseointegrated bone matrix of ZDSD rats had decreased mineral-to-matrix and increased crystallinity compared with SPD controls. Osseointegrated bone volume per total volume was not different between the groups, whereas implant fixation was significantly decreased in ZDSD at 2 weeks but not at 10 weeks. A combination of trabecular mineral apposition rate and postoperative MCP-1 levels explained 55.6% of the variance in osseointegration, whereas cortical thickness, osseointegration mineral apposition rate, and matrix compositional parameters explained 69.2% of the variance in implant fixation strength. The results support the growing recognition that both peri-implant structure and matrix composition affect implant fixation and suggest that postoperative inflammation may contribute to poor outcomes after TJR surgeries in T2DM patients. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

4.
J Am Soc Mass Spectrom ; 34(12): 2672-2679, 2023 Dec 06.
Article En | MEDLINE | ID: mdl-37930109

Chromatographic separations at subzero temperature significantly improve the precision of back-exchange-corrected hydrogen-deuterium exchange mass spectrometry (HDX-MS) determinations. Our previously reported dual-enzyme HDX-MS analysis instrument used reversed phase liquid chromatography (RPLC) at -30 °C, but high backpressures limited flow rates and required materials and equipment rated for very high pressures. Here, we report the design and performance of a dual-enzyme HDX-MS analysis instrument comprising a RPLC trap column and a hydrophilic interaction liquid chromatography (HILIC) analytical column in a two-dimensional RPLC-HILIC configuration at subzero temperature. During operation at -30 °C, the HILIC column manifests greatly reduced backpressure, which enables faster analytical flow rates and the use of materials rated for lower maximum pressures. The average peptide eluted from a HILIC column during a 40 min gradient at -30 °C contained ≈13% more deuterium than peptides eluted from a tandem RPLC-RPLC apparatus using a conventional 8 min gradient at 0 °C. A subset of peptides eluted from the HILIC apparatus contained ≈24% more deuterium.


Chromatography, Reverse-Phase , Deuterium Exchange Measurement , Deuterium , Temperature , Chromatography, Liquid/methods , Chromatography, Reverse-Phase/methods , Mass Spectrometry , Peptides , Hydrogen , Hydrophobic and Hydrophilic Interactions
5.
Langmuir ; 39(35): 12313-12323, 2023 09 05.
Article En | MEDLINE | ID: mdl-37603854

Lipid nanoparticles are a generic type of nanomaterial with broad applicability in medicine as drug delivery vehicles. Liposomes are a subtype of lipid nanoparticles and, as a therapeutic platform, can be loaded with a genetic material or pharmaceutical agents for use as drug treatments. An open question for these types of lipid nanoparticles is what factor(s) affect the long-term stability of the particles. The stability of the particle is of great interest to understand and predict the effective shelf-life and storage requirements. In this report, we detail a one-year study of liposome stability as a function of lipid composition, buffer composition/pH, and storage temperature. This was done in aqueous solution without freezing. The effect of lipid composition is shown to be a critical factor when evaluating stability of the measured particle size and number concentration. Other factors (i.e., storage temperature and buffer pH/composition) were shown to be less critical but still have some effect. The stability of these particles informs formulation and optimal storage requirements and assists with future developmental planning of a NIST liposome-based reference material. This work also highlights the complex nature of long-term soft particle storage in biopharmaceutical applications.


Biological Products , Liposomes , Drug Delivery Systems , Biotin , Lipids
6.
Antioxidants (Basel) ; 12(7)2023 Jul 06.
Article En | MEDLINE | ID: mdl-37507930

Coenzyme Q (CoQ) is an essential lipid with many cellular functions, such as electron transport for cellular respiration, antioxidant protection, redox homeostasis, and ferroptosis suppression. Deficiencies in CoQ due to aging, genetic disease, or medication can be ameliorated by high-dose supplementation. As such, an understanding of the uptake and transport of CoQ may inform methods of clinical use and identify how to better treat deficiency. Here, we review what is known about the cellular uptake and intracellular distribution of CoQ from yeast, mammalian cell culture, and rodent models, as well as its absorption at the organism level. We discuss the use of these model organisms to probe the mechanisms of uptake and distribution. The literature indicates that CoQ uptake and distribution are multifaceted processes likely to have redundancies in its transport, utilizing the endomembrane system and newly identified proteins that function as lipid transporters. Impairment of the trafficking of either endogenous or exogenous CoQ exerts profound effects on metabolism and stress response. This review also highlights significant gaps in our knowledge of how CoQ is distributed within the cell and suggests future directions of research to better understand this process.

7.
Bull Volcanol ; 85(5): 29, 2023.
Article En | MEDLINE | ID: mdl-37090041

Data collected during well-observed eruptions can lead to dramatic increases in our understanding of volcanic processes. However, the necessary prioritization of public safety and hazard mitigation during a crisis means that scientific opportunities may be sacrificed. Thus, maximizing the scientific gains from eruptions requires improved planning and coordinating science activities among governmental organizations and academia before and during volcanic eruptions. One tool to facilitate this coordination is a Scientific Advisory Committee (SAC). In the USA, the Community Network for Volcanic Eruption Response (CONVERSE) has been developing and testing this concept during workshops and scenario-based activities. The December 2020 eruption of Kilauea volcano, Hawaii, provided an opportunity to test and refine this model in real-time and in a real-world setting. We present here the working model of a SAC developed during this eruption. Successes of the Kilauea SAC (K-SAC) included broadening the pool of scientists involved in eruption response and developing and codifying procedures that may form the basis of operation for future SACs. Challenges encountered by the K-SAC included a process of review and facilitation of research proposals that was too slow to include outside participation in the early parts of the eruption and a decision process that fell on a small number of individuals at the responding volcano observatory. Possible ways to address these challenges include (1) supporting community-building activities between eruptions that make connections among scientists within and outside formal observatories, (2) identifying key science questions and pre-planning science activities, which would facilitate more rapid implementation across a broader scientific group, and (3) continued dialog among observatory scientists, emergency responders, and non-observatory scientists about the role of SACs. The SAC model holds promise to become an integral part of future efforts, leading in the short and longer term to more effective hazard response and greater scientific discovery and understanding.

8.
Comput Biol Chem ; 102: 107796, 2023 Feb.
Article En | MEDLINE | ID: mdl-36495748

Epigenetic mechanisms leading to transcriptional regulation, including DNA methylation, are frequently dysregulated in diverse cancers. Interfering with aberrant DNA methylation performed by DNA cytosine methyltransferases (DNMTs) is a clinically validated approach. In particular, the selective inhibition of the de novo DNMT3A and DNMT3B enzymes, whose expression is limited to early embryogenesis, adult stem cells, and in cancers, is particularly attractive; such selectivity is likely to attenuate the dose limiting toxicity shown by current, non-selective DNMT inhibitors. We use molecular dynamics (MD) based computational analysis to study known small molecule binders of DNMT3A, then propose reversible, tight binding, and selective inhibitors that exploit the Asn1192/Arg688 difference between the maintenance DNMT1 and DNMT3A near the active site. A similar strategy exploiting the presence of a unique active site cysteine Cys666 is used to propose DNMT3A-selective irreversible inhibitors. We report our results of relative binding energies of the known and proposed compounds estimated using MM/GBSA and umbrella sampling (US) techniques, and our evaluation of other end-point binding free energy calculation methods for these receptors. These calculations offer insight into the potential for small molecules to selectively target the active site of DNMT3A.


DNA Methyltransferase 3A , Neoplasms , Adult , Humans , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation , DNA Methyltransferase 3A/antagonists & inhibitors , Methionine/genetics , Methionine/metabolism , Neoplasms/genetics , Racemethionine/metabolism , S-Adenosylmethionine/metabolism
9.
J Am Soc Mass Spectrom ; 33(7): 1282-1292, 2022 Jul 06.
Article En | MEDLINE | ID: mdl-35732031

For hydrogen-deuterium exchange mass spectrometry (HDX-MS) to have an increased role in quality control of biopharmaceuticals, H for D back-exchange occurring during protein analyses should be minimized to promote greater reproducibility. Standard HDX-MS analysis systems that digest proteins and separate peptides at pH 2.7 and 0 °C can lose >30% of the deuterium marker within 15 min of sample injection. This report describes the architecture and performance of a dual-enzyme, HDX-MS instrument that conducts liquid chromatography (LC) separations at subzero temperature, thereby reducing back-exchange and supporting longer LC separations with improved chromatographic resolution. LC separations of perdeuterated, fully reduced, iodoacetamide-treated BSA protein digest standard peptides were performed at 0, -10, -20, and -30 °C in ethylene glycol (EG)/H2O mixtures. Analyses conducted at -20 and -30 °C produced similar results. After subtracting for deuterium retained in arginine side chains, the average peptide eluted during a 40 min gradient contained ≈16% more deuterium than peptides eluted with a conventional 8 min gradient at 0 °C. A subset of peptides exhibited ≈26% more deuterium. Although chromatographic peaks shift with EG concentration and temperature, the apparatus elutes unbroadened LC peaks. Electrospray ion intensity does not decline with increasing EG fraction. To minimize bias from sample carryover, the fluidic circuits allow flush and backflush cleaning of all enzyme and LC columns. The system can perform LC separations and clean enzyme columns simultaneously. Temperature zones are controlled ±0.058 °C. The potential of increased sensitivity by mixing acetonitrile with the analytical column effluent was also examined.


Deuterium Exchange Measurement , Hydrogen Deuterium Exchange-Mass Spectrometry , Chromatography, Liquid/methods , Deuterium/chemistry , Deuterium Exchange Measurement/methods , Peptides/chemistry , Proteins/chemistry , Reproducibility of Results
10.
Front Mol Biosci ; 9: 876780, 2022.
Article En | MEDLINE | ID: mdl-35601836

Biopharmaceuticals such as monoclonal antibodies are required to be rigorously characterized using a wide range of analytical methods. Various material properties must be characterized and well controlled to assure that clinically relevant features and critical quality attributes are maintained. A thorough understanding of analytical method performance metrics, particularly emerging methods designed to address measurement gaps, is required to assure methods are appropriate for their intended use in assuring drug safety, stability, and functional activity. To this end, a series of interlaboratory studies have been conducted using NISTmAb, a biopharmaceutical-representative and publicly available monoclonal antibody test material, to report on state-of-the-art method performance, harmonize best practices, and inform on potential gaps in the analytical measurement infrastructure. Reported here is a summary of the study designs, results, and future perspectives revealed from these interlaboratory studies which focused on primary structure, post-translational modifications, and higher order structure measurements currently employed during biopharmaceutical development.

11.
Front Cardiovasc Med ; 9: 809027, 2022.
Article En | MEDLINE | ID: mdl-35360041

Background: Radiofrequency catheter ablation (CA) is an efficient antiarrhythmic treatment with a class I indication for idiopathic ventricular arrhythmia (IVA), only when drugs are ineffective or have unacceptable side effects. The accurate prediction of the origins of IVA can significantly increase the operation success rate, reduce operation duration and decrease the risk of complications. The present work proposes an artificial intelligence-enabled ECG analysis algorithm to estimate possible origins of idiopathic ventricular arrhythmia at a clinical-grade level accuracy. Method: A total of 18,612 ECG recordings extracted from 545 patients who underwent successful CA to treat IVA were proportionally sampled into training, validation and testing cohorts. We designed four classification schemes responding to different hierarchical levels of the possible IVA origins. For every classification scheme, we compared 98 distinct machine learning models with optimized hyperparameter values obtained through extensive grid search and reported an optimal algorithm with the highest accuracy scores attained on the testing cohorts. Results: For classification scheme 4, our pioneering study designs and implements a machine learning-based ECG algorithm to predict 21 possible sites of IVA origin with an accuracy of 98.24% on a testing cohort. The accuracy and F1-score for the left three schemes surpassed 99%. Conclusion: In this work, we developed an algorithm that precisely predicts the correct origins of IVA (out of 21 possible sites) and outperforms the accuracy of all prior studies and human experts.

13.
Bone ; 154: 116201, 2022 01.
Article En | MEDLINE | ID: mdl-34537437

X-linked hypophosphatemia (XLH) is caused by a loss-of-function mutation in the phosphate regulating gene with homology to endopeptidase located on the X chromosome (PHEX). Loss of functional PHEX results in elevated fibroblast growth factor 23 (FGF23), impaired phosphate reabsorption, and inhibited skeletal mineralization. Sclerostin, a protein produced primarily by osteocytes, suppresses bone formation by antagonizing canonical Wnt-signaling and is reported to be elevated in XLH patients. Our previous study reported that a monoclonal antibody to sclerostin (Scl-Ab) decreases FGF23 and increases phosphate and bone mass in growing Hyp mice (XLH murine model). In the current study, we investigated the efficacy of Scl-Ab in treating XLH pathophysiology in adult Hyp mice that are past the period of rapid skeletal growth (12 and 20-weeks old). We hypothesized that Scl-Ab would not only increase bone formation, bone strength and bone mass, but would also normalize phosphate regulating hormones, FGF23, parathyroid hormone (PTH), and vitamin 1,25(OH)2D. Scl-Ab treatment increased cortical area, trabecular bone volume fraction, trabecular bone formation rate, and the bending moment in both sexes of both age groups. Scl-Ab treatment suppressed circulating levels of intact FGF23 and c-term FGF23 in treated male and female wild-type and Hyp mice of both age groups and improved both vitamin 1,25(OH)2D and PTH. Scl-Ab treated Hyp mice also showed evidence of increased renal expression of the sodium-phosphate co-transporter, NPT2a, specifically in the female Hyp mice. Our study suggests that Scl-Ab treatment can improve several skeletal and metabolic pathologies associated with XLH, further establishes the role of sclerostin in the regulation of FGF23 and provides evidence that Scl-Ab can improve phosphate regulation by targeting the bone-renal axis.


Familial Hypophosphatemic Rickets , Animals , Bone Density , Familial Hypophosphatemic Rickets/pathology , Female , Fibroblast Growth Factors/metabolism , Humans , Male , Mice , Osteogenesis , PHEX Phosphate Regulating Neutral Endopeptidase/genetics , Parathyroid Hormone , Phosphates
14.
J Orthop Res ; 40(4): 862-870, 2022 04.
Article En | MEDLINE | ID: mdl-34061392

Bone microarchitectural parameters significantly contribute to implant fixation strength but the role of bone matrix composition is not well understood. To determine the relative contribution of microarchitecture and bone matrix composition to implant fixation strength, we placed titanium implants in 12-week-old intact Sprague-Dawley rats, ovariectomized-Sprague-Dawley rats, and Zucker diabetic fatty rats. We assessed bone microarchitecture by microcomputed tomography, bone matrix composition by Raman spectroscopy, and implant fixation strength at 2, 6, and 10 weeks postimplantation. A stepwise linear regression model accounted for 83.3% of the variance in implant fixation strength with osteointegration volume/total volume (50.4%), peri-implant trabecular bone volume fraction (14.2%), cortical thickness (9.3%), peri-implant trabecular crystallinity (6.7%), and cortical area (2.8%) as the independent variables. Group comparisons indicated that osseointegration volume/total volume was significantly reduced in the ovariectomy group at Week 2 (~28%) and Week 10 (~21%) as well as in the diabetic group at Week 10 (~34%) as compared with the age matched Sprague-Dawley group. The crystallinity of the trabecular bone was significantly elevated in the ovariectomy group at Week 2 (~4%) but decreased in the diabetic group at Week 10 (~3%) with respect to the Sprague-Dawley group. Our study is the first to show that bone microarchitecture explains most of the variance in implant fixation strength, but that matrix composition is also a contributing factor. Therefore, treatment strategies aimed at improving bone-implant contact and peri-implant bone volume without compromising matrix quality should be prioritized.


Implants, Experimental , Osseointegration , Animals , Female , Humans , Ovariectomy , Rats , Rats, Sprague-Dawley , Rats, Zucker , Titanium , X-Ray Microtomography/methods
15.
J Mol Biol ; 434(2): 167391, 2022 01 30.
Article En | MEDLINE | ID: mdl-34890647

Previous reports present different models for the stabilization of the Fc-FcγRI immune complex. Although accord exists on the importance of L235 in IgG1 and some hydrophobic contacts for complex stabilization, discord exists regarding the existence of stabilizing glycoprotein contacts between glycans of IgG1 and a conserved FG-loop (171MGKHRY176) of FcγRIa. Complexes formed from the FcγRIa receptor and IgG1s containing biantennary glycans with N-acetylglucosamine, galactose, and α2,6-N-acetylneuraminic terminations were measured by hydrogen-deuterium exchange mass spectrometry (HDX-MS), classified for dissimilarity with Welch's ANOVA and Games-Howell post hoc procedures, and modeled with molecular dynamics (MD) simulations. For each glycoform of the IgG1-FcγRIa complex peptic peptides of Fab, Fc and FcγRIa report distinct H/D exchange rates. MD simulations corroborate the differences in the peptide deuterium content through calculation of the percent of time that transient glycan-peptide bonds exist. These results indicate that stability of IgG1-FcγRIa complexes correlate with the presence of intermolecular glycoprotein interactions between the IgG1 glycans and the 173KHR175 motif within the FG-loop of FcγRIa. The results also indicate that intramolecular glycan-protein bonds stabilize the Fc region in isolated and complexed IgG1. Moreover, HDX-MS data evince that the Fab domain has glycan-protein binding contacts within the IgG1-FcγRI complex.


Antigen-Antibody Complex/chemistry , Glycoproteins/chemistry , Hydrogen Deuterium Exchange-Mass Spectrometry/methods , Immunoglobulin G/chemistry , Molecular Dynamics Simulation , Receptors, IgG/chemistry , Antibodies, Monoclonal/chemistry , Antigen-Antibody Complex/metabolism , Galactose , Glycoproteins/metabolism , Membrane Proteins/chemistry , Peptides/chemistry , Peptides/metabolism , Polysaccharides , Protein Binding
16.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Article En | MEDLINE | ID: mdl-34301896

Fault friction is central to understanding earthquakes, yet laboratory rock mechanics experiments are restricted to, at most, meter scale. Questions thus remain as to the applicability of measured frictional properties to faulting in situ. In particular, the slip-weakening distance [Formula: see text] strongly influences precursory slip during earthquake nucleation, but scales with fault roughness and is challenging to extrapolate to nature. The 2018 eruption of K̄ilauea volcano, Hawaii, caused 62 repeatable collapse events in which the summit caldera dropped several meters, accompanied by [Formula: see text] 4.7 to 5.4 very long period (VLP) earthquakes. Collapses were exceptionally well recorded by global positioning system (GPS) and tilt instruments and represent unique natural kilometer-scale friction experiments. We model a piston collapsing into a magma reservoir. Pressure at the piston base and shear stress on its margin, governed by rate and state friction, balance its weight. Downward motion of the piston compresses the underlying magma, driving flow to the eruption. Monte Carlo estimation of unknowns validates laboratory friction parameters at the kilometer scale, including the magnitude of steady-state velocity weakening. The absence of accelerating precollapse deformation constrains [Formula: see text] to be [Formula: see text] mm, potentially much less. These results support the use of laboratory friction laws and parameters for modeling earthquakes. We identify initial conditions and material and magma-system parameters that lead to episodic caldera collapse, revealing that small differences in eruptive vent elevation can lead to major differences in eruption volume and duration. Most historical basaltic caldera collapses were, at least partly, episodic, implying that the conditions for stick-slip derived here are commonly met in nature.

17.
Sci Rep ; 11(1): 12620, 2021 06 16.
Article En | MEDLINE | ID: mdl-34135370

In the search for novel broad-spectrum therapeutics to fight chronic infections, inflammation, and cancer, host defense peptides (HDPs) have garnered increasing interest. Characterizing their biologically-active conformations and minimum motifs for function represents a requisite step to developing them into efficacious and safe therapeutics. Here, we demonstrate that metallating HDPs with Cu2+ is an effective chemical strategy to improve their cytotoxicity on cancer cells. Mechanistically, we find that prepared as Cu2+-complexes, the peptides not only physically but also chemically damage lipid membranes. Our testing ground features piscidins 1 and 3 (P1/3), two amphipathic, histidine-rich, membrane-interacting, and cell-penetrating HDPs that are α-helical bound to membranes. To investigate their membrane location, permeabilization effects, and lipid-oxidation capability, we employ neutron reflectometry, impedance spectroscopy, neutron diffraction, and UV spectroscopy. While P1-apo is more potent than P3-apo, metallation boosts their cytotoxicities by up to two- and seven-fold, respectively. Remarkably, P3-Cu2+ is particularly effective at inserting in bilayers, causing water crevices in the hydrocarbon region and placing Cu2+ near the double bonds of the acyl chains, as needed to oxidize them. This study points at a new paradigm where complexing HDPs with Cu2+ to expand their mechanistic reach could be explored to design more potent peptide-based anticancer therapeutics.


Antineoplastic Agents/pharmacology , Cell-Penetrating Peptides/pharmacology , Copper/chemistry , Lipid Bilayers/chemistry , A549 Cells , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Cell-Penetrating Peptides/chemistry , Fish Proteins/chemistry , Fish Proteins/pharmacology , HeLa Cells , Humans , Lipid Peroxidation , Models, Molecular
19.
Sci Rep ; 10(1): 18531, 2020 10 28.
Article En | MEDLINE | ID: mdl-33116203

Inhibition of human Monoacylglycerol Lipase (hMGL) offers a novel approach for treating neurological diseases. The design of inhibitors, targeting active-inactive conformational transitions of the enzyme, can be aided by understanding the interplay between structure and dynamics. Here, we report the effects of mutations within the catalytic triad on structure, conformational gating and dynamics of hMGL by combining kinetics, NMR, and HDX-MS data with metadynamics simulations. We found that point mutations alter delicate conformational equilibria between active and inactive states. HDX-MS reveals regions of the hMGL that become substantially more dynamic upon substitution of catalytic acid Asp-239 by alanine. These regions, located far from the catalytic triad, include not only loops but also rigid α-helixes and ß-strands, suggesting their involvement in allosteric regulation as channels for long-range signal transmission. The results identify the existence of a preorganized global communication network comprising of tertiary (residue-residue contacts) and quaternary (rigid-body contacts) networks that mediate robust, rapid intraprotein signal transmission. Catalytic Asp-239 controls hMGL allosteric communications and may be considered as an essential residue for the integration and transmission of information to enzymes' remote regions, in addition to its well-known role to facilitate Ser-122 activation. Our findings may assist in the identification of new druggable sites in hMGL.


Monoacylglycerol Lipases/genetics , Monoacylglycerol Lipases/metabolism , Monoacylglycerol Lipases/physiology , Allosteric Regulation , Catalysis , Humans , Kinetics , Magnetic Resonance Spectroscopy/methods , Models, Molecular , Molecular Dynamics Simulation , Mutation , Mutation, Missense , Protein Conformation , Structure-Activity Relationship
20.
Nucleic Acids Res ; 48(20): 11589-11601, 2020 11 18.
Article En | MEDLINE | ID: mdl-33053173

DNA adenine methylation by Caulobacter crescentus Cell Cycle Regulated Methyltransferase (CcrM) is an important epigenetic regulator of gene expression. The recent CcrM-DNA cocrystal structure shows the CcrM dimer disrupts four of the five base pairs of the (5'-GANTC-3') recognition site. We developed a fluorescence-based assay by which Pyrrolo-dC tracks the strand separation event. Placement of Pyrrolo-dC within the DNA recognition site results in a fluorescence increase when CcrM binds. Non-cognate sequences display little to no fluorescence changes, showing that strand separation is a specificity determinant. Conserved residues in the C-terminal segment interact with the phospho-sugar backbone of the non-target strand. Replacement of these residues with alanine results in decreased methylation activity and changes in strand separation. The DNA recognition mechanism appears to occur with the Type II M.HinfI DNA methyltransferase and an ortholog of CcrM, BabI, but not with DNA methyltransferases that lack the conserved C-terminal segment. The C-terminal segment is found broadly in N4/N6-adenine DNA methyltransferases, some of which are human pathogens, across three Proteobacteria classes, three other phyla and in Thermoplasma acidophilum, an Archaea. This Pyrrolo-dC strand separation assay should be useful for the study of other enzymes which likely rely on a strand separation mechanism.


Caulobacter crescentus/enzymology , Site-Specific DNA-Methyltransferase (Adenine-Specific)/chemistry , Site-Specific DNA-Methyltransferase (Adenine-Specific)/metabolism , Amino Acid Motifs , Caulobacter crescentus/cytology , DNA/chemistry , DNA Methylation , Deoxycytidine/analogs & derivatives , Fluorescence , Mutation , Phenotype , Protein Binding , Pyrroles , Sequence Alignment , Site-Specific DNA-Methyltransferase (Adenine-Specific)/genetics
...