Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 168
1.
FASEB J ; 38(8): e23585, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38661043

Fractional laser ablation is a technique developed in dermatology to induce remodeling of skin scars by creating a dense pattern of microinjuries. Despite remarkable clinical results, this technique has yet to be tested for scars in other tissues. As a first step toward determining the suitability of this technique, we aimed to (1) characterize the response to microinjuries in the healthy and cirrhotic liver, and (2) determine the underlying cause for any differences in response. Healthy and cirrhotic rats were treated with a fractional laser then euthanized from 0 h up to 14 days after treatment. Differential expression was assessed using RNAseq with a difference-in-differences model. Spatial maps of tissue oxygenation were acquired with hyperspectral imaging and disruptions in blood supply were assessed with tomato lectin perfusion. Healthy rats showed little damage beyond the initial microinjury and healed completely by 7 days without scarring. In cirrhotic rats, hepatocytes surrounding microinjury sites died 4-6 h after ablation, resulting in enlarged and heterogeneous zones of cell death. Hepatocytes near blood vessels were spared, particularly near the highly vascularized septa. Gene sets related to ischemia and angiogenesis were enriched at 4 h. Laser-treated regions had reduced oxygen saturation and broadly disrupted perfusion of nodule microvasculature, which matched the zones of cell death. Our results demonstrate that the cirrhotic liver has an exacerbated response to microinjuries and increased susceptibility to ischemia from microvascular damage, likely related to the vascular derangements that occur during cirrhosis development. Modifications to the fractional laser tool, such as using a femtosecond laser or reducing the spot size, may be able to prevent large disruptions of perfusion and enable further development of a laser-induced microinjury treatment for cirrhosis.


Ischemia , Liver Cirrhosis , Animals , Rats , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Male , Ischemia/metabolism , Ischemia/pathology , Liver/metabolism , Liver/pathology , Laser Therapy/methods , Rats, Sprague-Dawley , Hepatocytes/metabolism
2.
Dermatol Surg ; 2024 Mar 22.
Article En | MEDLINE | ID: mdl-38518178

BACKGROUND: Autofluorescence photography can detect specific light-tissue interactions and record important pathophysiological changes associated with nonmelanoma skin cancer (NMSC), which has been ascribed to the fluorescence of an aromatic amino acid, tryptophan. OBJECTIVE: To assess the impact of a novel, autofluorescence imaging (AFI) device on margin control for NMSCs before Mohs micrographic surgery (MMS) in an effort to decrease overall operating time. METHODS: Before the initial stage of MMS, NMSCs were measured with a 2-mm margin as standard of care (normal margin). The tumor was then imaged with the AFI device. A 2-mm margin was drawn around the fluorescent area captured by the AFI device and was referred to as the camera margin. The tumor was excised based on the normal margin and evaluated on frozen histological section. RESULTS: Imaging based on the AFI device resulted in appropriate recommendations for margin control in 8 of 11 tumors. Four of these tumors did not fluoresce and demonstrated a lack of tumor residuum on stage I specimen, as anticipated. There were no side effects from the AFI device. CONCLUSION: This is an initial pilot study that supports the use of a novel, noninvasive imaging device to help with margin assessment before MMS. On optimization, this device has potential to extend applicability to surgical excisions for tumors that do not fulfill criteria for MMS.

3.
Pigment Cell Melanoma Res ; 37(3): 403-410, 2024 May.
Article En | MEDLINE | ID: mdl-38361478

Post-inflammatory hyperpigmentation (PIH) is a hypermelanosis that often occurs secondary to skin irritation or injury, especially in darker skin tones, for which there is currently a lack of effective treatment options. Few preclinical models are available to study PIH. Here, we show that the Yucatan miniature pig consistently develops PIH after skin injuries. Skin wounds were produced on Yucatan pigs by needle punches, full-thickness excisions, or burns. Wound sites were monitored and photographed regularly. Tissue samples were collected after 24 weeks and processed for histology/immunohistochemistry. Skin pigmentation and histologic changes were quantified by computer-assisted image analyses. All injury methods resulted in hyperpigmentation. Melanin content at the histologic level was quantified in the larger (burn and excision) wounds, showing a significant increase compared to uninjured skin. Increased melanin was found for both epidermal and dermal regions. Dermal melanin deposits were primarily clustered around the papillary vasculature, and were associated not with melanocytes but with leukocytes. The Yucatan miniature pig model recapitulates key clinical and histologic features of PIH in humans, including skin hyperpigmentation at both gross and histologic levels, and persistence of dermal melanin subsequent to injury. This model could be used to further our understanding of the etiology of PIH, and for new therapy development.


Disease Models, Animal , Hyperpigmentation , Melanins , Swine, Miniature , Animals , Swine , Hyperpigmentation/pathology , Hyperpigmentation/metabolism , Melanins/metabolism , Skin/pathology , Skin/metabolism , Inflammation/pathology , Skin Pigmentation , Female , Humans
4.
J Invest Dermatol ; 2024 Jan 17.
Article En | MEDLINE | ID: mdl-38237729

Wound research has typically been performed without regard for where the wounds are located on the body, despite well-known heterogeneities in physical and biological properties between different skin areas. The skin covering the palms and soles is highly specialized, and plantar ulcers are one of the most challenging and costly wound types to manage. Using primarily the porcine model, we show that plantar skin is molecularly and functionally more distinct from nonplantar skin than previously recognized, with unique gene and protein expression profiles, broad alterations in cellular functions, constitutive activation of many wound-associated phenotypes, and inherently delayed healing. This unusual physiology is likely to play a significant but underappreciated role in the pathogenesis of plantar ulcers as well as the last 25+ years of futility in therapy development efforts. By revealing this critical yet unrecognized pitfall, we hope to contribute to the development of more effective therapies for these devastating nonhealing wounds.

5.
J Am Acad Dermatol ; 90(4): 767-774, 2024 Apr.
Article En | MEDLINE | ID: mdl-38086517

BACKGROUND: People with Neurofibromatosis Type 1 (NF1) suffer disfigurement and pain when hundreds to thousands of cutaneous neurofibromas (cNFs) appear and grow throughout life. Surgical removal of cNFs under anesthesia is the only standard therapy, leaving surgical scars. OBJECTIVE: Effective, minimally-invasive, safe, rapid, tolerable treatment(s) of small cNFs that may prevent tumor progression. METHODS: Safety, tolerability, and efficacy of 4 different treatments were compared in 309, 2-4 mm cNFs across 19 adults with Fitzpatrick skin types (FST) I-IV: radiofrequency (RF) needle coagulation, 755 nm alexandrite laser with suction, 980 nm diode laser, and intratumoral injection of 10 mg/mL deoxycholate. Regional pain, clinical responses, tumor height and volume (by 3D photography) were assessed before, 3 and 6 months post-treatment. Biopsies were obtained electively at 3 months. RESULTS: There was no scarring or adverse events > grade 2. Each modality significantly (P < .05) reduced or cleared cNFs, with large variation between tumors and participants. Alexandrite laser and deoxycholate were fast and least painful; 980 nm laser was most painful. Growth of cNFs was not stimulated by treatment(s) based on height and volume values at 3 and 6 months compared to baseline. LIMITATIONS: Intervention was a single treatment session; dosimetry has not been optimized. CONCLUSIONS: Small cNFs can be rapidly and safely treated without surgery.


Neurofibroma , Neurofibromatosis 1 , Neuroma , Skin Neoplasms , Adult , Humans , Prospective Studies , Neurofibroma/surgery , Treatment Outcome , Skin Neoplasms/surgery , Neurofibromatosis 1/complications , Neurofibromatosis 1/therapy , Cicatrix , Pain , Deoxycholic Acid
6.
Adv Sci (Weinh) ; 10(36): e2303731, 2023 Dec.
Article En | MEDLINE | ID: mdl-37946633

In the age of antimicrobial resistance, the urgency by which novel therapeutic approaches need to be introduced into the clinical pipeline has reached critical levels. Antimicrobial blue light (aBL), as an alternative approach, has demonstrated promise as a stand-alone therapeutic method, albeit with a limited window of antimicrobial activity. Work by others indicates that treatment with antibiotics increases the production of reactive oxygen species (ROS) which may, in part, contribute to the bactericidal effects of antibiotics. These findings suggest that there may be potential for synergistic interactions with aBL, that similarly generates ROS. Therefore, in this study, the mechanism of aBL is investigated, and the potential for aBL to synergistically promote antibiotic activity is similarly evaluated. Furthermore, the translatability of using aBL and chloramphenicol in combination within a mouse model of Acinetobacter baumanii burn infection is assessed. It is concluded that porphyrins and hydroxyl radicals driven by "free iron" are paramount to the effectiveness of aBL; and aBL is effective at promoting multiple antibiotics in different multidrug-resistant bacteria. Moreover, rROS up-regulation, and promoted antibiotic uptake are observed during aBL+antibiotic exposure. Lastly, aBL combined with chloramphenicol appears to be both effective and safe for the treatment of A. baumannii burn infection. In conclusion, aBL may be a useful adjunct therapy to antibiotics to potentiate their action.


Anti-Infective Agents , Burns , Animals , Mice , Anti-Bacterial Agents/pharmacology , Hydroxyl Radical , Blue Light , Reactive Oxygen Species , Burns/microbiology , Chloramphenicol/pharmacology , Bacteria
7.
J Photochem Photobiol B ; 244: 112720, 2023 Jul.
Article En | MEDLINE | ID: mdl-37186990

Cutaneous bacterial wound infections typically involve gram-positive cocci such as Staphylococcus aureus (SA) and usually become biofilm infections. Bacteria in biofilms may be 100-1000-fold more resistant to an antibiotic than the clinical laboratory minimal inhibitory concentration (MIC) for that antibiotic, contributing to antimicrobial resistance (AMR). AMR is a growing global threat to humanity. One pathogen-antibiotic resistant combination, methicillin-resistant SA (MRSA) caused more deaths globally than any other such combination in a recent worldwide statistical review. Many wound infections are accessible to light. Antimicrobial phototherapy, and particularly antimicrobial blue light therapy (aBL) is an innovative non-antibiotic approach often overlooked as a possible alternative or adjunctive therapy to reduce antibiotic use. We therefore focused on aBL treatment of biofilm infections, especially MRSA, focusing on in vitro and ex vivo porcine skin models of bacterial biofilm infections. Since aBL is microbicidal through the generation of reactive oxygen species (ROS), we hypothesized that menadione (Vitamin K3), a multifunctional ROS generator, might enhance aBL. Our studies suggest that menadione can synergize with aBL to increase both ROS and microbicidal effects, acting as a photosensitizer as well as an ROS recycler in the treatment of biofilm infections. Vitamin K3/menadione has been given orally and intravenously worldwide to thousands of patients. We conclude that menadione/Vitamin K3 can be used as an adjunct to antimicrobial blue light therapy, increasing the effectiveness of this modality in the treatment of biofilm infections, thereby presenting a potential alternative to antibiotic therapy, to which biofilm infections are so resistant.


Anti-Infective Agents , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Wound Infection , Humans , Vitamin K 3/pharmacology , Vitamin K 3/therapeutic use , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Reactive Oxygen Species/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Infective Agents/pharmacology , Biofilms , Staphylococcal Infections/drug therapy , Microbial Sensitivity Tests
8.
Lasers Surg Med ; 55(4): 390-404, 2023 04.
Article En | MEDLINE | ID: mdl-36883985

BACKGROUND: Extracorporeal membrane oxygenators (ECMO) are currently utilized to mechanically ventilate blood when lung or lung and heart function are impaired, like in cases of acute respiratory distress syndrome (ARDS). ARDS can be caused by severe cases of carbon monoxide (CO) inhalation, which is the leading cause of poison-related deaths in the United States. ECMOs can be further optimized for severe CO inhalation using visible light to photo-dissociate CO from hemoglobin (Hb). In previous studies, we combined phototherapy with an ECMO to design a photo-ECMO device, which significantly increased CO elimination and improved survival in CO-poisoned animal models using light at 460, 523, and 620 nm wavelengths. Light at 620 nm was the most effective in removing CO. OBJECTIVE: The aim of this study is to analyze the light propagation at 460, 523, and 620 nm wavelengths and the 3D blood flow and heating distribution within the photo-ECMO device that increased CO elimination in CO-poisoned animal models. METHODS: Light propagation, blood flow dynamics, and heat diffusion were modeled using the Monte Carlo method and the laminar Navier-Stokes and heat diffusion equations, respectively. RESULTS: Light at 620 nm propagated through the device blood compartment (4 mm), while light at 460 and 523 nm only penetrated 48% to 50% (~2 mm). The blood flow velocity in the blood compartment varied with regions of high (5 mm/s) and low (1 mm/s) velocity, including stagnant flow. The blood temperatures at the device outlet for 460, 523, and 620 nm wavelengths were approximately 26.7°C, 27.4°C, and 20°C, respectively. However, the maximum temperatures within the blood treatment compartment rose to approximately 71°C, 77°C, and 21°C, respectively. CONCLUSIONS: As the extent of light propagation correlates with efficiency in photodissociation, the light at 620 nm is the optimal wavelength for removing CO from Hb while maintaining blood temperatures below thermal damage. Measuring the inlet and outlet blood temperatures is not enough to avoid unintentional thermal damage by light irradiation. Computational models can help eliminate risks of excessive heating and improve device development by analyzing design modifications that improve blood flow, like suppressing stagnant flow, further increasing the rate of CO elimination.


Carbon Monoxide Poisoning , Extracorporeal Membrane Oxygenation , Respiratory Distress Syndrome , Animals , Carbon Monoxide Poisoning/therapy , Oxygenators, Membrane , Extracorporeal Membrane Oxygenation/methods , Phototherapy/methods , Respiratory Distress Syndrome/therapy
9.
J Invest Dermatol ; 143(1): 134-141.e1, 2023 01.
Article En | MEDLINE | ID: mdl-35985498

Cutaneous pain is a common symptom of skin disease, and available therapies are inadequate. We developed a neural selective and injectable method of cryoneurolysis with ice slurry, which leads to a long-lasting decrease in mechanical pain. The aim of this study is to determine whether slurry injection reduces cutaneous pain without inducing the side effects associated with conventional cryoneurolysis. Using the rat sciatic nerve, we examined the effects of slurry on nerve structure and function in comparison with the effects of a Food and Drug Administration‒approved cryoneurolysis device (Iovera). Coherent anti-Stokes Raman scattering microscopy and immunofluorescence staining were used to investigate histological effects on the sciatic nerve and on downstream cutaneous nerve fibers. Complete Freund's Adjuvant model of cutaneous pain was used to study the effect of the slurry on reducing pain. Structural changes in myelin induced by slurry were comparable with those induced by Iovera, which uses much colder temperatures. Compared with that of Iovera, the decrease in mechanical pain due to slurry was less profound but lasted longer without signs of dysesthesia. Slurry did not cause a reduction of epidermal nerve fibers or a change in thermal pain sensitivity. Slurry-treated rats showed reduced cutaneous mechanical pain in response to Complete Freund's Adjuvant. Slurry injection can be used to successfully reduce cutaneous pain without causing dysesthesia.


Ice , Skin Diseases , Rats , Animals , Freund's Adjuvant/pharmacology , Rats, Sprague-Dawley , Paresthesia , Pain/etiology
10.
Lab Anim ; 57(1): 59-68, 2023 Feb.
Article En | MEDLINE | ID: mdl-35962527

Foot ulceration annually affects millions of patients and accounts for billions of dollars in medical expenses in the US alone. Many previous studies have investigated co-morbidities associated with impaired healing, such as microbial infection, compromised circulation, and diabetes. By comparison, little is known about how wound healing proceeds in plantar skin, despite its many unique specializations related to its load-bearing function. One of the main challenges in modeling plantar wounds is the difficulty in maintaining wound dressings, as animals generally have a low tolerance to wearing bandages on their feet. With assistance from the MGH Center for Comparative Medicine, we developed a positive reinforcement-based behavioral training regimen that successfully induced tolerance for plantar dressings in swine, which is a critical first step towards enabling in vivo study of the wound healing process in this highly specialized skin area. This training program will be described in detail in this manuscript.


Bandages , Wound Healing , Swine , Animals
11.
Sci Rep ; 12(1): 19891, 2022 11 18.
Article En | MEDLINE | ID: mdl-36400878

Cryoneurolysis is an opioid-sparing therapy for long-lasting and reversible reduction of pain. We developed a nerve-selective method for cryoneurolysis by local injection of ice-slurry (- 5 to - 6 °C) that induced decrease in nocifensive response starting from about a week after treatment and lasting up to 8 weeks. In this study, we test the hypothesis that injection of colder slurry leads to faster onset of analgesia. Colder slurry (- 9ºC) was injected around the rat sciatic nerve to induce cryoneurolysis. Hematoxylin and Eosin (H&E) staining was used to examine histologic effects on surrounding tissues. Coherent anti-Stokes Raman scattering (CARS) microscopy was used to study effects on myelin sheaths. Functional tests were used to assess changes in sensory and motor function in the treated hind paw. No inflammation or scarring was detected in surrounding skin and muscle tissues at day 7 post slurry injection. Functional tests showed rapid onset reduction in mechanical pain sensitivity starting from day 1 and lasting up to day 98. CARS imaging demonstrated disintegration of myelin sheaths post treatment followed by complete recovery of nerve structure by day 140. In this study we showed that colder slurry (- 9 °C) produces more rapid onset and longer duration of analgesia, while remaining nerve-selective.


Analgesia , Pain Management , Rats , Animals , Sciatic Nerve , Myelin Sheath , Pain
12.
Laryngoscope Investig Otolaryngol ; 7(5): 1675-1680, 2022 Oct.
Article En | MEDLINE | ID: mdl-36258870

Objectives: There is growing evidence that excess adipose tissue within the head and neck contributes to obstructive sleep apnea (OSA), particularly in obese patients. This subset of the population is often difficult to treat with surgical therapies. We theorized that a novel, transcervical method of injectable cryoablation using ice-slurry can achieve low temperatures without causing neurovascular damage or airway distress in a swine model. Methods: Four Yorkshire pigs were injected with ice-slurry comprised of normal saline and 10% glycerol cooled to -6°C via a transcervical, ultrasound guided approach. Direct laryngoscopy was used to confirm accurate placement of the slurry. Thermocouple placement at the needle-tip was used to measure temperatures at injection site. Swine were monitored for clinical signs of tongue necrosis and airway edema for 2 months, and then euthanized. Twelve biopsy samples from the base of the tongue were collected for histology. These were assessed for presence of tissue damage, inflammation and collagen formation by a blinded board-certified pathologist. Results: Tongue tissue temperature below 10°C was achieved for 13.5 ± 1.1 min. Minimum tissue temperature was -4 ± 0.6°C. There was no clinical or pathological evidence of tongue damage to include damage to the lingual nerve or artery. There was some histologic evidence of new collagen formation in areas of the tongue. Conclusions: Transcervical ultrasound-guided ice-slurry injection is feasible, well-tolerated at temperatures previously shown to be capable of selectively targeting adipose tissue in the base of the tongue in a preclinical swine model, without causing neurovascular damage or airway distress when properly injected.

14.
J Pain Res ; 15: 2905-2910, 2022.
Article En | MEDLINE | ID: mdl-36132994

Background: Cryoneurolysis uses tissue cooling as an opioid-sparing, long-lasting treatment for peripheral nerve pain. A nerve-selective method for cryoneurolysis by local injection of ice-slurry was developed to allow cryoneurolysis to be performed with a standard needle and syringe, similar to peripheral nerve blocks. Since the treatment of patients with chronic pain may require repeated injections, we investigated the safety and tolerance of repeated treatments in a rat model. Methods: Three repeated ice-slurry treatments, given 6 weeks apart were performed around the rat sciatic nerve. Nerve and surrounding tissues were collected up to 4 months after the third treatment for analysis. Coherent anti-Stokes Raman scattering (CARS) microscopy was used to study effects on myelin sheaths and axon structure. Immunofluorescence (IF) staining was used to study effects on axon density. Hematoxylin and Eosin (H&E) staining was used to examine histologic effects on sciatic nerve and surrounding tissue. Results: Histologic and CARS image analysis of nerve tissue collected months after three injections demonstrated recovery of nerve structure, myelin organization and axon density to baseline levels, without any residual inflammation, scarring or neuroma formation. No inflammation or scarring was detected in surrounding skin and muscle tissues. Conclusion: Repeated ice-slurry injections cause temporary, nerve-selective and reversible changes in the peripheral nerve. There was no histologic damage to surrounding skin and muscle tissues. Repeated treatments with injectable ice-slurry for cryoneurolysis appear to be safe and well tolerated. Clinical studies for patients with chronic pain are warranted.

15.
Dermatol Surg ; 48(10): 1083-1088, 2022 10 01.
Article En | MEDLINE | ID: mdl-36036977

BACKGROUND: Autologous fractional full-thickness skin grafting is a method of harvesting full-thickness skin with reduced donor site morbidity compared with conventional skin grafting. OBJECTIVE: To demonstrate that full-thickness skin microbiopsies can be harvested with minimal scarring or complications. MATERIALS AND METHODS: In a nonrandomized, self-controlled, pilot trial, subjects ( n = 8) underwent tissue harvesting of full-thickness skin columns of 200, 400, 500, 600, 800 µm, 1, and 2 mm diameters. The extent of scarring was measured by using the Patient and Observer Scar Assessment Scale and blinded evaluation of photographs at 6 weeks postprocedure. Pain visual analog scale (VAS) and side effects were recorded. RESULTS: When present, scars were first observed after 2 to 4 weeks, much more often for wounds >400 µm ( p < .001). Blinded dermatologists increasingly identified clinical scarring on photographs with larger harvested microcolumn diameters ( p < .001). Median VAS pain score was 0 (range 0-4). All subjects rated the procedure safe and tolerable. CONCLUSION: Harvesting full-thickness skin microcolumns is well-tolerated over a wide range of column diameters. At diameters of less than 500 µm, side effects including scarring are minimal.


Burns , Cicatrix , Burns/complications , Cicatrix/etiology , Cicatrix/pathology , Humans , Pain/etiology , Skin/pathology , Skin Transplantation/adverse effects , Skin Transplantation/methods , Wound Healing
16.
Front Microbiol ; 13: 932466, 2022.
Article En | MEDLINE | ID: mdl-35903474

Vibrio vulnificus is an invasive marine bacterium that causes a variety of serious infectious diseases. With the increasing multidrug-resistant variants, treatment of V. vulnificus infections is becoming more difficult. In this study, we explored antimicrobial blue light (aBL; 405 nm wavelength) for the treatment of V. vulnificus infections. We first assessed the efficacy of aBL against five strains of V. vulnificus in vitro. Next, we identified and quantified intracellular porphyrins in V. vulnificus to provide mechanistic insights. Additionally, we measured intracellular reactive oxygen species (ROS) production and bacterial membrane permeabilization following aBL exposures. Lastly, we conducted a preclinical study to investigate the efficacy and safety of aBL for the prevention and treatment of burn infections caused by V. vulnificus in mice. We found that aBL effectively killed V. vulnificus in vitro in both planktonic and biofilm states, with up to a 5.17- and 4.57-log10 CFU reduction being achieved, respectively, following an aBL exposure of 216 J/cm2. Protoporphyrin IX and coproporphyrins were predominant in all the strains. Additionally, intracellular ROS was significantly increased following aBL exposures (P < 0.01), and there was evidence of aBL-induced permeabilization of the bacterial membrane (P < 0.0001). In the preclinical studies, we found that female mice treated with aBL 30 min after bacterial inoculation showed a survival rate of 81% following 7 days of observation, while only 28% survival was observed in untreated female mice (P < 0.001). At 6 h post-inoculation, an 86% survival was achieved in aBL-treated female mice (P = 0.0002). For male mice, 86 and 63% survival rates were achieved when aBL treatment was given 30 min and 6 h after bacterial inoculation, respectively, compared to 32% survival in the untreated mice (P = 0.0004 and P = 0.04). aBL did not reduce cellular proliferation or induce apoptosis. We found five cytokines were significantly upregulated in the males after aBL treatment, including MCSF (P < 0.001), MCP-5 (P < 0.01), TNF RII (P < 0.01), CXCL1 (P < 0.01), and TIMP-1 (P < 0.05), and one in the females (TIMP-1; P < 0.05), suggesting that aBL may induce certain inflammatory processes. In conclusion, aBL may potentially be applied to prevent and treat V. vulnificus infections.

17.
Lasers Surg Med ; 54(10): 1288-1297, 2022 12.
Article En | MEDLINE | ID: mdl-35593006

INTRODUCTION: The ability of ablative fractional lasers (AFL) to enhance topical drug uptake is well established. After AFL delivery, however, drug clearance by local vasculature is poorly understood. Modifications in vascular clearance may enhance AFL-assisted drug concentrations and prolong drug dwell time in the skin. Aiming to assess the role and modifiability of vascular clearance after AFL-assisted delivery, this study examined the impact of vasoregulative interventions on AFL-assisted 5-fluorouracil (5-FU) concentrations in in vivo skin. METHODS: 5-FU uptake was assessed in intact and AFL-exposed skin in a live pig model. After fractional CO2 laser exposure (15 mJ/microbeam, 5% density), vasoregulative intervention using topical brimonidine cream, epinephrine solution, or pulsed dye laser (PDL) was performed in designated treatment areas, followed by a single 5% 5-FU cream application. At 0, 1, 4, 48, and 72 h, 5-FU concentrations were measured in 500 and 1500 µm skin layers by mass spectrometry (n = 6). A supplemental assessment of blood flow following AFL ± vasoregulation was performed using optical coherence tomography (OCT) in a human volunteer. RESULTS: Compared to intact skin, AFL facilitated a prompt peak in 5-FU delivery that remained elevated up to 4 hours (1500 µm: 1.5 vs. 31.8 ng/ml [1 hour, p = 0.002]; 5.3 vs. 14.5 ng/ml [4 hours, p = 0.039]). However, AFL's impact was transient, with 5-FU concentrations comparable to intact skin at later time points. Overall, vasoregulative intervention with brimonidine or PDL led to significantly higher peak 5-FU concentrations, prolonging the drug's dwell time in the skin versus AFL delivery alone. As such, brimonidine and PDL led to twofold higher 5-FU concentrations than AFL alone in both skin layers by 1 hour (e.g., 500 µm: 107 ng/ml [brimonidine]; 96.9 ng/ml [PDL], 46.6 ng/ml [AFL alone], p ≤ 0.024), and remained significantly elevated at 4 hours (p ≤ 0.024). A similar pattern was observed for epinephrine, although trends remained nonsignificant (p ≥ 0.09). Prolonged 5-FU delivery was provided by PDL, resulting in sustained drug deposition compared to AFL alone at both 48 and 72 hours in the superficial skin layer (p ≤ 0.024). Supporting drug delivery findings, OCT revealed that increases in local blood flow after AFL were mitigated in test areas also exposed to PDL, brimonidine, or epinephrine, with PDL providing the greatest, sustained reduction in flow over 48 hours. CONCLUSION: Vasoregulative intervention in conjunction with AFL-assisted delivery enhances and prolongs 5-FU deposition in in vivo skin.


Lasers, Gas , Skin , Swine , Humans , Animals , Fluorouracil , Brimonidine Tartrate/therapeutic use , Epinephrine
18.
Plast Reconstr Surg Glob Open ; 10(1): e4033, 2022 Jan.
Article En | MEDLINE | ID: mdl-35186615
19.
Int J Radiat Biol ; 98(9): 1484-1494, 2022.
Article En | MEDLINE | ID: mdl-35020574

PURPOSE: Radiation therapy for cancer is limited by damage to surrounding normal tissues, and failure to completely eradicate a tumor. This study investigated a novel radiosensitizer, composed of lutetium phosphate nanoparticles doped with 1% praseodymium and 1.5% neodymium cations (LuPO4:Pr3+,Nd3+). During X-ray exposure, the particles emit UVC photons (200-280 nm), resulting in increased tumor cell death, by oxygen-independent UVC-induced damage. METHODS AND MATERIALS: Specially designed LuPO4:Pr3+,Nd3+ nanoscintillator particles were characterized by dynamic light scattering, TEM and emission spectroscopy upon excitation. Cell death was determined by reduction in tumor spheroid growth over a 3-week period using a 3 D A549 lung cancer model. Cell cycle was evaluated by flow cytometry and cell death pathways were assessed by Annexin V/PI stain as well as quantify apoptotic bodies. RESULTS: Lung cancer cells expressed no long-term or nonspecific toxicity when incubated with LuPO4:Pr3+,Nd3+ nanoscintillators. In contrast, there was significant growth inhibition of cell spheres treated with 2.5 mg/ml LuPO4:Pr3+,Nd3+ in combination with ionizing radiation (4 or 8 Gy X-ray), compared to radiation alone. Homogeneous distribution of small NPs throughout the entire sphere resulted in more pronounced lethality and growth inhibition, compared to particle distribution limited to the outer cell layers. Growth inhibition after the combined treatment was caused by necrosis, apoptosis and G2/M cell cycle arrest. CONCLUSIONS: Newly designed UVC-emitting nanoscintillators (LuPO4:Pr3+,Nd3+) in combination with ionizing radiation cause tumorsphere growth inhibition by inducing cell cycle arrest, apoptosis and necrosis. UVC-emitting nanoparticles offer a promising new strategy for enhancing local tumor response to ionizing radiation treatment.


Lung Neoplasms , Nanoparticles , Apoptosis/radiation effects , Cell Line, Tumor , Humans , Lung Neoplasms/radiotherapy , Necrosis , Radiation, Ionizing
...