Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Trends Hear ; 28: 23312165241229880, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38545645

RESUMEN

Bilateral cochlear implants (BiCIs) result in several benefits, including improvements in speech understanding in noise and sound source localization. However, the benefit bilateral implants provide among recipients varies considerably across individuals. Here we consider one of the reasons for this variability: difference in hearing function between the two ears, that is, interaural asymmetry. Thus far, investigations of interaural asymmetry have been highly specialized within various research areas. The goal of this review is to integrate these studies in one place, motivating future research in the area of interaural asymmetry. We first consider bottom-up processing, where binaural cues are represented using excitation-inhibition of signals from the left ear and right ear, varying with the location of the sound in space, and represented by the lateral superior olive in the auditory brainstem. We then consider top-down processing via predictive coding, which assumes that perception stems from expectations based on context and prior sensory experience, represented by cascading series of cortical circuits. An internal, perceptual model is maintained and updated in light of incoming sensory input. Together, we hope that this amalgamation of physiological, behavioral, and modeling studies will help bridge gaps in the field of binaural hearing and promote a clearer understanding of the implications of interaural asymmetry for future research on optimal patient interventions.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Localización de Sonidos , Percepción del Habla , Humanos , Percepción del Habla/fisiología , Audición , Localización de Sonidos/fisiología
2.
Curr Biol ; 34(4): 841-854.e4, 2024 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-38325376

RESUMEN

Sequential neural dynamics encoded by time cells play a crucial role in hippocampal function. However, the role of hippocampal sequential neural dynamics in associative learning is an open question. We used two-photon Ca2+ imaging of dorsal CA1 (dCA1) neurons in the stratum pyramidale (SP) in head-fixed mice performing a go-no go associative learning task to investigate how odor valence is temporally encoded in this area of the brain. We found that SP cells responded differentially to the rewarded or unrewarded odor. The stimuli were decoded accurately from the activity of the neuronal ensemble, and accuracy increased substantially as the animal learned to differentiate the stimuli. Decoding the stimulus from individual SP cells responding differentially revealed that decision-making took place at discrete times after stimulus presentation. Lick prediction decoded from the ensemble activity of cells in dCA1 correlated linearly with lick behavior. Our findings indicate that sequential activity of SP cells in dCA1 constitutes a temporal memory map used for decision-making in associative learning. VIDEO ABSTRACT.


Asunto(s)
Región CA1 Hipocampal , Hipocampo , Ratones , Animales , Región CA1 Hipocampal/fisiología , Neuronas/fisiología , Aprendizaje , Condicionamiento Clásico
3.
ISME Commun ; 4(1): ycae014, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38419659

RESUMEN

Microbial associations that result in phytoplankton mortality are important for carbon transport in the ocean. This includes parasitism, which in microbial food webs is dominated by the marine alveolate group, Syndiniales. Parasites are expected to contribute to carbon recycling via host lysis; however, knowledge on host dynamics and correlation to carbon export remain unclear and limit the inclusion of parasitism in biogeochemical models. We analyzed a 4-year 18S rRNA gene metabarcoding dataset (2016-19), performing network analysis for 12 discrete depths (1-1000 m) to determine Syndiniales-host associations in the seasonally oligotrophic Sargasso Sea. Analogous water column and sediment trap data were included to define environmental drivers of Syndiniales and their correlation with particulate carbon flux (150 m). Syndiniales accounted for 48-74% of network edges, most often associated with Dinophyceae and Arthropoda (mainly copepods) at the surface and Rhizaria (Polycystinea, Acantharea, and RAD-B) in the aphotic zone. Syndiniales were the only eukaryote group to be significantly (and negatively) correlated with particulate carbon flux, indicating their contribution to flux attenuation via remineralization. Examination of Syndiniales amplicons revealed a range of depth patterns, including specific ecological niches and vertical connection among a subset (19%) of the community, the latter implying sinking of parasites (infected hosts or spores) on particles. Our findings elevate the critical role of Syndiniales in marine microbial systems and reveal their potential use as biomarkers for carbon export.

4.
J Deaf Stud Deaf Educ ; 29(3): 362-376, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38240124

RESUMEN

This study investigated the acquisition of early expressive vocabulary among young children who are deaf and hard-of-hearing (DHH; n = 68) using auditory technology (hearing aids and cochlear implants). Parents completed a standardized vocabulary checklist, which allowed analyses of (i) the size of their child's spoken vocabulary; (ii) composition of the expressive lexicon (e.g., parts of speech such as nouns and verbs; semantic categories such as routines and body parts); and (iii) demographic and audiologic factors (e.g., chronologic age, degree of hearing access) potentially associated with these metrics. Young children who are DHH and use auditory technology acquired fewer spoken words than peers with typical hearing (TH) matched for chronologic age but more spoken words than peers with TH matched for listening experience. Action verbs-not nouns-significantly increased the odds of a child who is DHH achieving a vocabulary quotient within the normative range. These findings support the exploration of early expressive vocabulary size and composition-especially the number of active verbs-to guide clinical management and decision-making for young children who are DHH.


Asunto(s)
Sordera , Vocabulario , Humanos , Preescolar , Masculino , Femenino , Sordera/psicología , Personas con Deficiencia Auditiva/psicología , Desarrollo del Lenguaje , Audífonos/psicología , Niño , Implantes Cocleares/psicología , Pérdida Auditiva/psicología , Lactante
5.
Hear Res ; 443: 108962, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38295585

RESUMEN

Nestin expression is associated with pluripotency. Growing evidence suggests nestin is involved in hair cell development. The objective of this study was to investigate the morphology and role of nestin-expressing cells residing in the early postnatal murine inner ear. A lineage-tracing nestin reporter mouse line was used to further characterize these cells. Their cochleae and vestibular organs were immunostained and whole-mounted for cell counting. We found Nestin-expressing cells present in low numbers throughout the inner ear. Three morphotypes were observed: bipolar, unipolar, and globular. Mitotic activity was noted in nestin-expressing cells in the cochlea, utricle, saccule, and crista. Nestin-expressing cell characteristics were then observed after hair cell ablation in two mouse models. First, a reporter model demonstrated nestin expression in a significantly higher proportion of hair cells after hair cell ablation than in control cochleae. However, in a lineage tracing nestin reporter mouse, none of the new hair cells which repopulated the organ of Corti after hair cell ablation expressed nestin, nor did the nestin-expressing cells change in morphotype. In conclusion, Nestin-expressing cells were identified in the cochlea and vestibular organs. After hair cell ablation, nestin-expressing cells did not react to the insult. However, a small number of nestin-expressing cells in all inner ear tissues exhibited mitotic activity, supporting progenitor cell potential, though perhaps not involved in hair cell regeneration.


Asunto(s)
Cóclea , Vestíbulo del Laberinto , Animales , Ratones , Cóclea/metabolismo , Células Ciliadas Auditivas/metabolismo , Nestina/genética , Nestina/metabolismo , Sáculo y Utrículo/metabolismo , Vestíbulo del Laberinto/metabolismo
6.
J Acoust Soc Am ; 154(2): 751-762, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37556566

RESUMEN

Web-based testing is an appealing option for expanding psychoacoustics research outside laboratory environments due to its simple logistics. For example, research participants partake in listening tasks using their own computer and audio hardware and can participate in a comfortable environment of their choice at their own pace. However, it is unknown how deviations from conventional in-lab testing affect data quality, particularly in binaural hearing tasks that traditionally require highly precise audio presentation. Here, we used an online platform to replicate two published in-lab experiments: lateralization to interaural time and level differences (ITD and ILD, experiment I) and dichotic and contralateral unmasking of speech (experiment II) in normal-hearing (NH) young adults. Lateralization data collected online were strikingly similar to in-lab results. Likewise, the amount of unmasking measured online and in-lab differed by less than 1 dB, although online participants demonstrated higher speech reception thresholds overall than those tested in-lab by up to ∼7 dB. Results from online participants who completed a hearing screening versus those who self-reported NH did not differ significantly. We conclude that web-based psychoacoustics testing is a viable option for assessing binaural hearing abilities among young NH adults and discuss important considerations for online study design.


Asunto(s)
Percepción del Habla , Adulto Joven , Humanos , Psicoacústica , Audición , Percepción Auditiva , Internet
7.
J Acoust Soc Am ; 152(6): 3294, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36586876

RESUMEN

For listeners with bilateral cochlear implants (BiCIs), patient-specific differences in the interface between cochlear implant (CI) electrodes and the auditory nerve can lead to degraded temporal envelope information, compromising the ability to distinguish between targets of interest and background noise. It is unclear how comparisons of degraded temporal envelope information across spectral channels (i.e., electrodes) affect the ability to detect differences in the temporal envelope, specifically amplitude modulation (AM) rate. In this study, two pulse trains were presented simultaneously via pairs of electrodes in different places of stimulation, within and/or across ears, with identical or differing AM rates. Results from 11 adults with BiCIs indicated that sensitivity to differences in AM rate was greatest when stimuli were paired between different places of stimulation in the same ear. Sensitivity from pairs of electrodes was predicted by the poorer electrode in the pair or the difference in fidelity between both electrodes in the pair. These findings suggest that electrodes yielding poorer temporal fidelity act as a bottleneck to comparisons of temporal information across frequency and ears, limiting access to the cues used to segregate sounds, which has important implications for device programming and optimizing patient outcomes with CIs.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Adulto , Humanos , Estimulación Acústica , Implantación Coclear/métodos , Oído , Sonido
8.
J Clin Med ; 11(19)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36233686

RESUMEN

BACKGROUND: Speech discrimination assessments are used to validate amplification fittings of older children who are hard of hearing (CHH). Unfortunately, speech discrimination is not assessed clinically ≤24 months and in turn no studies have investigated the relationship between speech discrimination during infancy and later language development among CHH. OBJECTIVE: To examine the relationship between an individual infant's speech discrimination measured at 9 months and their expressive/receptive spoken language at 30 months for children with normal hearing (CNH) and CHH. METHODS: Behavioral speech discrimination was assessed at 9 months and language assessments were conducted at 16, 24, and 30 months using a parent questionnaire, and at 30 months using the Mullen Scales of Early Learning among 90 infants (49 CNH; 41 CHH). RESULTS: Conditioned Head Turn (CHT) performance for /a-i/ significantly predicted expressive and receptive language at 30 months across both groups. Parental questionnaires were also predictive of later language ability. No significant differences in speech discrimination or language outcomes between CNH and CHH were found. CONCLUSIONS: This is the first study to document a positive relationship between infant speech discrimination and later language abilities in both early-identified CHH and CNH.

9.
PeerJ ; 10: e14005, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36157057

RESUMEN

Microbial interactions have profound impacts on biodiversity, biogeochemistry, and ecosystem functioning, and yet, they remain poorly understood in the ocean and with respect to changing environmental conditions. We applied hierarchical clustering of an annual 16S and 18S amplicon dataset in the Skidaway River Estuary, which revealed two similar clusters for prokaryotes (Bacteria and Archaea) and protists: Cluster 1 (March-May and November-February) and Cluster 2 (June-October). We constructed co-occurrence networks from each cluster to explore how microbial networks and relationships vary between environmentally distinct periods in the estuary. Cluster 1 communities were exposed to significantly lower temperature, sunlight, NO3, and SiO4; only NH4 was higher at this time. Several network properties (e.g., edge number, degree, and centrality) were elevated for networks constructed with Cluster 1 vs. 2 samples. There was also evidence that microbial nodes in Cluster 1 were more connected (e.g., higher edge density and lower path length) compared to Cluster 2, though opposite trends were observed when networks considered Prokaryote-Protist edges only. The number of Prokaryote-Prokaryote and Prokaryote-Protist edges increased by >100% in the Cluster 1 network, mainly involving Flavobacteriales, Rhodobacterales, Peridiniales, and Cryptomonadales associated with each other and other microbial groups (e.g., SAR11, Bacillariophyta, and Strombidiida). Several Protist-Protist associations, including Bacillariophyta correlated with Syndiniales (Dino-Groups I and II) and an Unassigned Dinophyceae group, were more prevalent in Cluster 2. Based on the type and sign of associations that increased in Cluster 1, our findings indicate that mutualistic, competitive, or predatory relationships may have been more representative among microbes when conditions were less favorable in the estuary; however, such relationships require further exploration and validation in the field and lab. Coastal networks may also be driven by shifts in the abundance of certain taxonomic or functional groups. Sustained monitoring of microbial communities over environmental gradients, both spatial and temporal, is critical to predict microbial dynamics and biogeochemistry in future marine ecosystems.


Asunto(s)
Bacterias , Ecosistema , Bacterias/genética , Archaea/genética , Biodiversidad , Células Procariotas , Eucariontes/genética
10.
Gigascience ; 112022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35902092

RESUMEN

BACKGROUND: Amplicon sequencing (metabarcoding) is a common method to survey diversity of environmental communities whereby a single genetic locus is amplified and sequenced from the DNA of whole or partial organisms, organismal traces (e.g., skin, mucus, feces), or microbes in an environmental sample. Several software packages exist for analyzing amplicon data, among which QIIME 2 has emerged as a popular option because of its broad functionality, plugin architecture, provenance tracking, and interactive visualizations. However, each new analysis requires the user to keep track of input and output file names, parameters, and commands; this lack of automation and standardization is inefficient and creates barriers to meta-analysis and sharing of results. FINDINGS: We developed Tourmaline, a Python-based workflow that implements QIIME 2 and is built using the Snakemake workflow management system. Starting from a configuration file that defines parameters and input files-a reference database, a sample metadata file, and a manifest or archive of FASTQ sequences-it uses QIIME 2 to run either the DADA2 or Deblur denoising algorithm; assigns taxonomy to the resulting representative sequences; performs analyses of taxonomic, alpha, and beta diversity; and generates an HTML report summarizing and linking to the output files. Features include support for multiple cores, automatic determination of trimming parameters using quality scores, representative sequence filtering (taxonomy, length, abundance, prevalence, or ID), support for multiple taxonomic classification and sequence alignment methods, outlier detection, and automated initialization of a new analysis using previous settings. The workflow runs natively on Linux and macOS or via a Docker container. We ran Tourmaline on a 16S ribosomal RNA amplicon data set from Lake Erie surface water, showing its utility for parameter optimization and the ability to easily view interactive visualizations through the HTML report, QIIME 2 viewer, and R- and Python-based Jupyter notebooks. CONCLUSION: Automated workflows like Tourmaline enable rapid analysis of environmental amplicon data, decreasing the time from data generation to actionable results. Tourmaline is available for download at github.com/aomlomics/tourmaline.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Programas Informáticos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN Ribosómico 16S/genética , Silicatos , Flujo de Trabajo
11.
PLoS One ; 17(2): e0263516, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35134072

RESUMEN

The ability to determine a sound's location is critical in everyday life. However, sound source localization is severely compromised for patients with hearing loss who receive bilateral cochlear implants (BiCIs). Several patient factors relate to poorer performance in listeners with BiCIs, associated with auditory deprivation, experience, and age. Critically, characteristic errors are made by patients with BiCIs (e.g., medial responses at lateral target locations), and the relationship between patient factors and the type of errors made by patients has seldom been investigated across individuals. In the present study, several different types of analysis were used to understand localization errors and their relationship with patient-dependent factors (selected based on their robustness of prediction). Binaural hearing experience is required for developing accurate localization skills, auditory deprivation is associated with degradation of the auditory periphery, and aging leads to poorer temporal resolution. Therefore, it was hypothesized that earlier onsets of deafness would be associated with poorer localization acuity and longer periods without BiCI stimulation or older age would lead to greater amounts of variability in localization responses. A novel machine learning approach was introduced to characterize the types of errors made by listeners with BiCIs, making them simple to interpret and generalizable to everyday experience. Sound localization performance was measured in 48 listeners with BiCIs using pink noise trains presented in free-field. Our results suggest that older age at testing and earlier onset of deafness are associated with greater average error, particularly for sound sources near the center of the head, consistent with previous research. The machine learning analysis revealed that variability of localization responses tended to be greater for individuals with earlier compared to later onsets of deafness. These results suggest that early bilateral hearing is essential for best sound source localization outcomes in listeners with BiCIs.


Asunto(s)
Pérdida Auditiva Bilateral/fisiopatología , Localización de Sonidos/fisiología , Estimulación Acústica/métodos , Adulto , Factores de Edad , Edad de Inicio , Anciano , Anciano de 80 o más Años , Percepción Auditiva/fisiología , Implantación Coclear/métodos , Implantes Cocleares/efectos adversos , Señales (Psicología) , Sordera/fisiopatología , Femenino , Audición/fisiología , Pérdida Auditiva/fisiopatología , Pruebas Auditivas , Humanos , Masculino , Persona de Mediana Edad , Sonido
12.
Front Neurosci ; 16: 1018190, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36699517

RESUMEN

Speech information in the better ear interferes with the poorer ear in patients with bilateral cochlear implants (BiCIs) who have large asymmetries in speech intelligibility between ears. The goal of the present study was to assess how each ear impacts, and whether one dominates, speech perception using simulated CI processing in older and younger normal-hearing (ONH and YNH) listeners. Dynamic range (DR) was manipulated symmetrically or asymmetrically across spectral bands in a vocoder. We hypothesized that if abnormal integration of speech information occurs with asymmetrical speech understanding, listeners would demonstrate an atypical preference in accuracy when reporting speech presented to the better ear and fusion of speech between the ears (i.e., an increased number of one-word responses when two words were presented). Results from three speech conditions showed that: (1) When the same word was presented to both ears, speech identification accuracy decreased if one or both ears decreased in DR, but listeners usually reported hearing one word. (2) When two words with different vowels were presented to both ears, speech identification accuracy and percentage of two-word responses decreased consistently as DR decreased in one or both ears. (3) When two rhyming words (e.g., bed and led) previously shown to phonologically fuse between ears (e.g., bled) were presented, listeners instead demonstrated interference as DR decreased. The word responded in (2) and (3) came from the right (symmetric) or better (asymmetric) ear, especially in (3) and for ONH listeners in (2). These results suggest that the ear with poorer dynamic range is downweighted by the auditory system, resulting in abnormal fusion and interference, especially for older listeners.

13.
J R Soc Interface ; 18(174): 20200750, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33499769

RESUMEN

The cerebellum is a neural structure essential for learning, which is connected via multiple zones to many different regions of the brain, and is thought to improve human performance in a large range of sensory, motor and even cognitive processing tasks. An intriguing possibility for the control of complex robotic systems would be to develop an artificial cerebellar chip with multiple zones that could be similarly connected to a variety of subsystems to optimize performance. The novel aim of this paper, therefore, is to propose and investigate a multizone cerebellar chip applied to a range of tasks in robot adaptive control and sensorimotor processing. The multizone cerebellar chip was evaluated using a custom robotic platform consisting of an array of tactile sensors driven by dielectric electroactive polymers mounted upon a standard industrial robot arm. The results demonstrate that the performance in each task was improved by the concurrent, stable learning in each cerebellar zone. This paper, therefore, provides the first empirical demonstration that a synthetic, multizone, cerebellar chip could be embodied within existing robotic systems to improve performance in a diverse range of tasks, much like the cerebellum in a biological system.


Asunto(s)
Robótica , Encéfalo , Cerebelo , Humanos , Aprendizaje
14.
HardwareX ; 10: e00239, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35607674

RESUMEN

Sampling of environmental DNA (eDNA) in seawater is an increasingly common approach to non-invasively assess marine biodiversity, detect cryptic or invasive species, and monitor specific groups of organisms. Despite this remarkable utility, collection and filtration of eDNA samples in the field still requires considerable time and effort. Recent advancements in automated water samplers have standardized the eDNA collection process, allowing researchers to collect eDNA day or night, sample in locations that are difficult to access, and remove the need for highly trained personnel to perform sampling. However, the high cost of purchasing or building these samplers represents a financial hurdle to widespread application. To overcome this difficulty, we have designed and built a low-cost subsurface automated sampler for eDNA (SASe). Each sampler is submersible to 55 m, can filter a pre-programmable volume of water, and preserves eDNA at the site of collection. SASe samplers have replaceable filters and a low build cost (∼280 USD vs. >100,000 USD for other eDNA samplers), which facilitates repeated field sampling at fine spatial and temporal scales. Lab testing has shown the SASe to be as effective as a standard desktop peristaltic pump for sampling, preserving, and recovering marine eDNA. SASe design files and operating code are open-source, promoting the use of this tool to meet a range of future eDNA research applications, including project-specific customizations to the current design.

15.
Hear Res ; 396: 108067, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32961518

RESUMEN

Pitch is an important cue that allows the auditory system to distinguish between sound sources. Pitch cues are less useful when listeners are not able to discriminate different pitches between the two ears, a problem encountered by listeners with hearing impairment (HI). Many listeners with HI will fuse the pitch of two dichotically presented tones over a larger range of interaural frequency disparities, i.e., have a broader fusion range, than listeners with normal hearing (NH). One potential explanation for broader fusion in listeners with HI is that hearing aids stimulate at high sound levels. The present study investigated effects of overall sound levels on pitch fusion in listeners with NH. It was hypothesized that if sound level increased, then fusion range would increase. Fusion ranges were measured by presenting a fixed frequency tone to a reference ear simultaneously with a variable frequency tone to the opposite ear and finding the range of frequencies that were fused with the reference frequency. No significant effects of sound level (comfortable level ± 15 dB) on fusion range were found, even when tested within the range of levels where some listeners with HI show large fusion ranges. Results suggest that increased sound level does not explain increased fusion range in listeners with HI and imply that other factors associated with hearing loss might play a larger role.


Asunto(s)
Implantes Cocleares , Audífonos , Pérdida Auditiva , Pruebas Auditivas , Umbral Auditivo , Audición , Humanos
16.
Brain Sci ; 10(6)2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32604860

RESUMEN

Deafness in both ears is highly disruptive to communication in everyday listening situations. Many individuals with profound deafness receive bilateral cochlear implants (CIs) to gain access to spatial cues used in localization and speech understanding in noise. However, the benefit of bilateral CIs, in particular sensitivity to interaural time and level differences (ITD and ILDs), varies among patients. We measured binaural sensitivity in 46 adult bilateral CI patients to explore the relationship between binaural sensitivity and three classes of patient-related factors: age, acoustic exposure, and electric hearing experience. Results show that ILD sensitivity increased with shorter years of acoustic exposure, younger age at testing, or an interaction between these factors, moderated by the duration of bilateral hearing impairment. ITD sensitivity was impacted by a moderating effect between years of bilateral hearing impairment and CI experience. When age at onset of deafness was treated as two categories (<18 vs. >18 years of age), there was no clear effect for ILD sensitivity, but some differences were observed for ITD sensitivity. Our findings imply that maximal binaural sensitivity is obtained by listeners with a shorter bilateral hearing impairment, a longer duration of CI experience, and potentially a younger age at testing. 198/200.

17.
mSphere ; 5(3)2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32461270

RESUMEN

Syndiniales are a ubiquitous group of protist parasites that infect and kill a wide range of hosts, including harmful bloom-forming dinoflagellates. Despite the importance of parasitism as an agent of plankton mortality, parasite-host dynamics remain poorly understood, especially over time, hindering the inclusion of parasitism in food web and ecosystem models. For a full year in the Skidaway River Estuary (Georgia), we employed weekly 18S rRNA sampling and co-occurrence network analysis to characterize temporal parasite-host infection dynamics of Syndiniales. Over the year, Syndiniales exhibited strong temporal variability, with higher relative abundance from June to October (7 to 28%) than other months in the year (0.01% to 6%). Nonmetric dimensional scaling of Syndiniales composition revealed tight clustering in June to October that coincided with elevated temperatures (23 to 31°C), though in general, abiotic factors poorly explained composition (canonical correspondence analysis [CCA] and partial least-squares [PLS]) and were less important in the network than biotic relationships. Syndiniales amplicon sequence variants (ASVs) were well represented in the co-occurrence network (20% of edges) and had significant positive associations (Spearman r > 0.7), inferred to be putative parasite-host relationships, with known dinoflagellate hosts (e.g., Akashiwo and Gymnodinium) and other protist groups (e.g., ciliates, radiolarians, and diatoms). Positive associations rarely involved a single Syndiniales and dinoflagellate species, implying flexible parasite-host infection dynamics. These findings provide insight into the temporal dynamics of Syndiniales over a full year and reinforce the importance of single-celled parasites in driving plankton population dynamics. Further empirical work is needed to confirm network interactions and to incorporate parasitism within the context of ecosystem models.IMPORTANCE Protist parasites in the marine alveolate group, Syndiniales, have been observed within infected plankton host cells for decades, and recently, global-scale efforts (Tara Ocean exploration) have confirmed their importance within microbial communities. Yet, protist parasites remain enigmatic, particularly with respect to their temporal dynamics and parasite-host interactions. We employed weekly 18S amplicon surveys over a full year in a coastal estuary, revealing strong temporal shifts in Syndiniales parasites, with highest relative abundance during warmer summer to fall months. Though influenced by temperature, Syndiniales population dynamics were also driven by a high frequency of biological interactions with other protist groups, as determined through co-occurrence network analysis. Parasitic interactions implied by the network highlighted a range of confirmed (dinoflagellates) and putative (diatoms) interactions and suggests parasites may be less selective in their preferred hosts. Understanding parasite-host dynamics over space and time will improve our ability to include parasitism as a loss term in microbial food web models.


Asunto(s)
Dinoflagelados/genética , Dinoflagelados/fisiología , Ecosistema , Eucariontes/genética , Interacciones Huésped-Parásitos/genética , Animales , Eucariontes/fisiología , Dinámica Poblacional , ARN Ribosómico 18S/genética , Estaciones del Año , Agua de Mar/parasitología , Simbiosis
18.
Front Syst Neurosci ; 14: 11, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32269515

RESUMEN

The cerebellum is widely implicated in having an important role in adaptive motor control. Many of the computational studies on cerebellar motor control to date have focused on the associated architecture and learning algorithms in an effort to further understand cerebellar function. In this paper we switch focus to the signals driving cerebellar adaptation that arise through different motor behavior. To do this, we investigate computationally the contribution of the cerebellum to the optokinetic reflex (OKR), a visual feedback control scheme for image stabilization. We develop a computational model of the adaptation of the cerebellar response to the world velocity signals that excite the OKR (where world velocity signals are used to emulate head velocity signals when studying the OKR in head-fixed experimental laboratory conditions). The results show that the filter learnt by the cerebellar model is highly dependent on the power spectrum of the colored noise world velocity excitation signal. Thus, the key finding here is that the cerebellar filter is determined by the statistics of the OKR excitation signal.

19.
J Acoust Soc Am ; 146(5): 3232, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31795662

RESUMEN

Bilateral cochlear implants (BICIs) provide improved sound localization and speech understanding in noise compared to unilateral CIs. However, normal-hearing (NH) listeners demonstrate superior binaural processing abilities compared to BICI listeners. This investigation sought to understand differences between NH and BICI listeners' processing of interaural time differences (ITDs) and interaural level differences (ILDs) as a function of fine-structure and envelope rate using an intracranial lateralization task. The NH listeners were presented band-limited acoustical pulse trains and sinusoidally amplitude-modulated tones using headphones, and the BICI listeners were presented single-electrode electrical pulse trains using direct stimulation. Lateralization range increased as fine-structure rate increased for ILDs in BICI listeners. Lateralization range decreased for rates above 100 Hz for fine-structure ITDs, but decreased for rates lower or higher than 100 Hz for envelope ITDs in both groups. Lateralization ranges for ITDs were smaller for BICI listeners on average. After controlling for age, older listeners showed smaller lateralization ranges and BICI listeners had a more rapid decline for ITD sensitivity at 300 pulses per second. This work suggests that age confounds comparisons between NH and BICI listeners in temporal processing tasks and that some NH-BICI binaural processing differences persist even when age differences are adequately addressed.


Asunto(s)
Envejecimiento/fisiología , Implantes Cocleares , Pérdida Auditiva/fisiopatología , Localización de Sonidos , Adulto , Anciano , Femenino , Pérdida Auditiva/rehabilitación , Humanos , Masculino , Persona de Mediana Edad , Tiempo de Reacción
20.
J Acoust Soc Am ; 146(2): 1189, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31472559

RESUMEN

Separating sound sources in acoustic environments relies on making ongoing, highly accurate spectro-temporal comparisons. However, listeners with hearing impairment may have varying quality of temporal encoding within or across ears, which may limit the listeners' ability to make spectro-temporal comparisons between places-of-stimulation. In this study in normal hearing listeners, depth of amplitude modulation (AM) for sinusoidally amplitude modulated (SAM) tones was manipulated in an effort to reduce the coding of periodicity in the auditory nerve. The ability to judge differences in AM rates was studied for stimuli presented to different cochlear places-of-stimulation, within- or across-ears. It was hypothesized that if temporal encoding was poorer for one tone in a pair, then sensitivity to differences in AM rate of the pair would decrease. Results indicated that when the depth of AM was reduced from 50% to 20% for one SAM tone in a pair, sensitivity to differences in AM rate decreased. Sensitivity was greatest for AM rates near 90 Hz and depended upon the places-of-stimulation being compared. These results suggest that degraded temporal representations in the auditory nerve for one place-of-stimulation could lead to deficits comparing that temporal information with other places-of-stimulation.


Asunto(s)
Localización de Sonidos/fisiología , Adulto , Cóclea/fisiología , Oído/fisiología , Femenino , Audición , Humanos , Masculino , Sonido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...