Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 22
1.
MAbs ; 16(1): 2339337, 2024.
Article En | MEDLINE | ID: mdl-38634473

Recent development of amyloid-ß (Aß)-targeted immunotherapies for Alzheimer's disease (AD) have highlighted the need for accurate diagnostic methods. Antibody-based positron emission tomography (PET) ligands are well suited for this purpose as they can be directed toward the same target as the therapeutic antibody. Bispecific, brain-penetrating antibodies can achieve sufficient brain concentrations, but their slow blood clearance remains a challenge, since it prolongs the time required to achieve a target-specific PET signal. Here, two antibodies were designed based on the Aß antibody bapineuzumab (Bapi) - one monospecific IgG (Bapi) and one bispecific antibody with an antigen binding fragment (Fab) of the transferrin receptor (TfR) antibody 8D3 fused to one of the heavy chains (Bapi-Fab8D3) for active, TfR-mediated transport into the brain. A variant of each antibody was designed to harbor a mutation to the neonatal Fc receptor (FcRn) binding domain, to increase clearance. Blood and brain pharmacokinetics of radiolabeled antibodies were studied in wildtype (WT) and AD mice (AppNL-G-F). The FcRn mutation substantially reduced blood half-life of both Bapi and Bapi-Fab8D3. Bapi-Fab8D3 showed high brain uptake and the brain-to-blood ratio of its FcRn mutated form was significantly higher in AppNL-G-F mice than in WT mice 12 h after injection and increased further up to 168 h. Ex vivo autoradiography showed specific antibody retention in areas with abundant Aß pathology. Taken together, these results suggest that reducing FcRn binding of a full-sized bispecific antibody increases the systemic elimination and could thereby drastically reduce the time from injection to in vivo imaging.


Alzheimer Disease , Antibodies, Bispecific , Histocompatibility Antigens Class I , Receptors, Fc , Receptors, Transferrin , Animals , Mice , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides , Brain/diagnostic imaging , Brain/metabolism , Immunoglobulin G/metabolism , Mice, Transgenic , Receptors, Fc/immunology , Receptors, Fc/metabolism , Receptors, Transferrin/immunology , Receptors, Transferrin/metabolism
2.
Anal Biochem ; 686: 115406, 2024 03.
Article En | MEDLINE | ID: mdl-38006952

Despite years of utilizing the transferrin receptor 1 (TfR1) to transport large biomolecules into the brain, there is no consensus on how to optimally measure affinity to it. The aim of this study was to compare different methods for measuring the affinities of anti-TfR1 antibodies. Antibodies 15G11, OX26 and 8D3 are known to successfully carry large biologics across the blood-brain barrier in humans, rats, and mice, respectively. The affinity to their respective species of TfR1 was measured with different surface plasmon resonance setups in Biacore and an on-cell assay. When the antibody was captured and TfR1 was the analyte, the dissociation in Biacore was very slow. The dissociation was faster when the antibody was the analyte and TfR1 was the ligand. The Biacore setup with capture of N-terminal FLAG-tag TfR1 yielded the most similar apparent affinities as the cell assay. In conclusion, it is important to evaluate assay parameters including assay orientation, surface capture method, and antibody-format when comparing binding kinetics for TfR1 antibodies. Although it seems possible to determine relative affinities of TfR1 antibodies using the methods described here, both the FLAG-tag TfR1 capture setup and cell assays likely yield apparent affinities that are most translatable in vivo.


Antibodies , Surface Plasmon Resonance , Rats , Mice , Humans , Animals , Surface Plasmon Resonance/methods , Antibodies/metabolism , Blood-Brain Barrier/metabolism , Brain/metabolism , Receptors, Transferrin/metabolism
3.
Alzheimers Res Ther ; 15(1): 90, 2023 05 02.
Article En | MEDLINE | ID: mdl-37131196

BACKGROUND: Brain-directed immunotherapy is a promising strategy to target amyloid-ß (Aß) deposits in Alzheimer's disease (AD). In the present study, we compared the therapeutic efficacy of the Aß protofibril targeting antibody RmAb158 with its bispecific variant RmAb158-scFv8D3, which enters the brain by transferrin receptor-mediated transcytosis. METHODS: AppNL-G-F knock-in mice received RmAb158, RmAb158-scFv8D3, or PBS in three treatment regimens. First, to assess the acute therapeutic effect, a single antibody dose was given to 5 months old AppNL-G-F mice, with evaluation after 3 days. Second, to assess the antibodies' ability to halt the progression of Aß pathology, 3 months old AppNL-G-F mice received three doses during a week, with evaluation after 2 months. Reduction of RmAb158-scFv8D3 immunogenicity was explored by introducing mutations in the antibody or by depletion of CD4+ T cells. Third, to study the effects of chronic treatment, 7-month-old AppNL-G-F mice were CD4+ T cell depleted and treated with weekly antibody injections for 8 weeks, including a final diagnostic dose of [125I]RmAb158-scFv8D3, to determine its brain uptake ex vivo. Soluble Aß aggregates and total Aß42 were quantified with ELISA and immunostaining. RESULTS: Neither RmAb158-scFv8D3 nor RmAb158 reduced soluble Aß protofibrils or insoluble Aß1-42 after a single injection treatment. After three successive injections, Aß1-42 was reduced in mice treated with RmAb158, with a similar trend in RmAb158-scFv8D3-treated mice. Bispecific antibody immunogenicity was somewhat reduced by directed mutations, but CD4+ T cell depletion was used for long-term therapy. CD4+ T cell-depleted mice, chronically treated with RmAb158-scFv8D3, showed a dose-dependent increase in blood concentration of the diagnostic [125I]RmAb158-scFv8D3, while concentration was low in plasma and brain. Chronic treatment did not affect soluble Aß aggregates, but a reduction in total Aß42 was seen in the cortex of mice treated with both antibodies. CONCLUSIONS: Both RmAb158 and its bispecific variant RmAb158-scFv8D3 achieved positive effects of long-term treatment. Despite its ability to efficiently enter the brain, the benefit of using the bispecific antibody in chronic treatment was limited by its reduced plasma exposure, which may be a result of interactions with TfR or the immune system. Future research will focus in new antibody formats to further improve Aß immunotherapy.


Alzheimer Disease , Mice , Animals , Alzheimer Disease/genetics , Mice, Transgenic , Amyloid beta-Peptides/metabolism , Brain/metabolism , Antibodies/therapeutic use , Antibodies/pharmacology , Immunotherapy , Disease Models, Animal
4.
Transl Neurodegener ; 11(1): 55, 2022 12 26.
Article En | MEDLINE | ID: mdl-36567338

BACKGROUND: Hijacking the transferrin receptor (TfR) is an effective strategy to transport amyloid-beta (Aß) immuno-positron emission tomography (immunoPET) ligands across the blood-brain barrier (BBB). Such ligands are more sensitive and specific than small-molecule ligands at detecting Aß pathology in mouse models of Alzheimer's disease (AD). This study aimed to determine if this strategy would be as sensitive in rats and to assess how TfR affinity affects BBB transport of bispecific immunoPET radioligands. METHODS: Two affinity variants of the rat TfR antibody, OX26, were chemically conjugated to a F(ab')2 fragment of the anti-Aß antibody, bapineuzumab (Bapi), to generate two bispecific fusion proteins: OX265-F(ab')2-Bapi and OX2676-F(ab')2-Bapi. Pharmacokinetic analyses were performed 4 h and 70 h post-injection of radioiodinated fusion proteins in wild-type (WT) rats. [124I]I-OX265-F(ab')2-Bapi was administered to TgF344-AD and WT rats for in vivo PET imaging. Ex vivo distribution of injected [124I]I-OX265-F(ab')2-Bapi and Aß pathology were assessed. RESULTS: More [125I]I-OX265-F(ab')2-Bapi was taken up into the brain 4 h post-administration than [124I]I-OX2676-F(ab')2-Bapi. [124I]I-OX265-F(ab')2-Bapi PET visualized Aß pathology with significantly higher signals in the TgF344-AD rats than in the WT littermates without Aß pathology. The PET signals significantly correlated with Aß levels in AD animals. CONCLUSION: Affinity to TfR affects how efficiently a TfR-targeting bispecific fusion protein will cross the BBB, such that the higher-affinity bispecific fusion protein crossed the BBB more efficiently. Furthermore, bispecific immunoPET imaging of brain Aß pathology using TfR-mediated transport provides good imaging contrast between TgF344-AD and WT rats, suggesting that this immunoPET strategy has the potential to be translated to higher species.


Alzheimer Disease , Amyloid beta-Peptides , Animals , Mice , Rats , Alzheimer Disease/diagnostic imaging , Amyloid beta-Peptides/metabolism , Brain/diagnostic imaging , Mice, Transgenic , Disease Models, Animal , Positron-Emission Tomography
5.
Pharmaceutics ; 13(2)2021 Feb 23.
Article En | MEDLINE | ID: mdl-33672373

Epidermal growth factor receptor (EGFR) is overexpressed in many malignancies. EGFR-targeted therapy extends survival of patients with disseminated cancers. Radionuclide molecular imaging of EGFR expression would make EGFR-directed treatment more personalized and therefore more efficient. A previous study demonstrated that affibody molecule [68Ga]Ga-DFO-ZEGFR:2377 permits specific positron-emission tomography (PET) imaging of EGFR expression in xenografts at 3 h after injection. We anticipated that imaging at 24 h after injection would provide higher contrast, but this is prevented by the short half-life of 68Ga (67.6 min). Here, we therefore tested the hypothesis that the use of the non-conventional long-lived positron emitter 66Ga (T1/2 = 9.49 h, ß+ = 56.5%) would permit imaging with higher contrast. 66Ga was produced by the 66Zn(p,n)66Ga nuclear reaction and DFO-ZEGFR:2377 was efficiently labelled with 66Ga with preserved binding specificity in vitro and in vivo. At 24 h after injection, [66Ga]Ga-DFO-ZEGFR:2377 provided 3.9-fold higher tumor-to-blood ratio and 2.3-fold higher tumor-to-liver ratio than [68Ga]Ga-DFO-ZEGFR:2377 at 3 h after injection. At the same time point, [66Ga]Ga-DFO-ZEGFR:2377 provided 1.8-fold higher tumor-to-blood ratio, 3-fold higher tumor-to-liver ratio, 1.9-fold higher tumor-to-muscle ratio and 2.3-fold higher tumor-to-bone ratio than [89Zr]Zr-DFO-ZEGFR:2377. Biodistribution data were confirmed by whole body PET combined with magnetic resonance imaging (PET/MRI). The use of the positron emitter 66Ga for labelling of DFO-ZEGFR:2377 permits PET imaging of EGFR expression at 24 h after injection and improves imaging contrast.

6.
Sci Rep ; 9(1): 14907, 2019 10 17.
Article En | MEDLINE | ID: mdl-31624303

Carbonic anhydrase IX (CAIX) is a cancer-associated molecular target for several classes of therapeutics. CAIX is overexpressed in a large fraction of renal cell carcinomas (RCC). Radionuclide molecular imaging of CAIX-expression might offer a non-invasive methodology for stratification of patients with disseminated RCC for CAIX-targeting therapeutics. Radiolabeled monoclonal antibodies and their fragments are actively investigated for imaging of CAIX expression. Promising alternatives are small non-immunoglobulin scaffold proteins, such as affibody molecules. A CAIX-targeting affibody ZCAIX:2 was re-designed with the aim to decrease off-target interactions and increase imaging contrast. The new tracer, DOTA-HE3-ZCAIX:2, was labeled with 111In and characterized in vitro. Tumor-targeting properties of [111In]In-DOTA-HE3-ZCAIX:2 were compared head-to-head with properties of the parental variant, [99mTc]Tc(CO)3-HE3-ZCAIX:2, and the most promising antibody fragment-based tracer, [111In]In-DTPA-G250(Fab')2, in the same batch of nude mice bearing CAIX-expressing RCC xenografts. Compared to the 99mTc-labeled parental variant, [111In]In-DOTA-HE3-ZCAIX:2 provides significantly higher tumor-to-lung, tumor-to-bone and tumor-to-liver ratios, which is essential for imaging of CAIX expression in the major metastatic sites of RCC. [111In]In-DOTA-HE3-ZCAIX:2 offers significantly higher tumor-to-organ ratios compared with [111In]In-G250(Fab')2. In conclusion, [111In]In-DOTA-HE3-ZCAIX:2 can be considered as a highly promising tracer for imaging of CAIX expression in RCC metastases based on our results and literature data.


Carbonic Anhydrase IX/antagonists & inhibitors , Carcinoma, Renal Cell/diagnostic imaging , Kidney Neoplasms/diagnostic imaging , Molecular Imaging/methods , Molecular Probes/administration & dosage , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Antigens, Neoplasm/immunology , Antigens, Neoplasm/metabolism , Carbonic Anhydrase IX/immunology , Carbonic Anhydrase IX/metabolism , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Female , Humans , Immunoglobulin Fragments/administration & dosage , Immunoglobulin Fragments/immunology , Immunoglobulin Fragments/pharmacology , Indium Radioisotopes , Kidney Neoplasms/pathology , Mice , Molecular Probes/chemistry , Molecular Probes/immunology , Molecular Probes/pharmacology , Radioactive Tracers , Single Photon Emission Computed Tomography Computed Tomography/methods , Tissue Distribution , Xenograft Model Antitumor Assays
7.
Sci Rep ; 9(1): 6779, 2019 05 01.
Article En | MEDLINE | ID: mdl-31043683

Human epidermal growth factor receptor type 3 (HER3) plays a crucial role in the progression of many cancer types. In vivo radionuclide imaging could be a reliable method for repetitive detection of HER3-expression in tumors. The main challenge of HER3-imaging is the low expression in tumors together with endogenous receptor expression in normal tissues, particularly the liver. A HER3-targeting affibody molecule labeled with radiocobalt via a NOTA chelator [57Co]Co-NOTA-Z08699 has demonstrated the most favorable biodistribution profile with the lowest unspecific hepatic uptake and high activity uptake in tumors. We hypothesized that specific uptake of labeled affibody monomer might be selectively blocked in the liver but not in tumors by a co-injection of non-labeled corresponding trivalent affibody (Z08699)3. Biodistribution of [57Co]Co-NOTA-Z08699 and [111In]In-DOTA-(Z08699)3 was studied in BxPC-3 xenografted mice. [57Co]Co-NOTA-Z08699 was co-injected with unlabeled trivalent affibody DOTA-(Z08699)3 at different monomer:trimer molar ratios. HER3-expression in xenografts was imaged using [57Co]Co-NOTA-Z08699 and [57Co]Co-NOTA-Z08699: DOTA-(Z08699)3. Hepatic activity uptake of [57Co]Co-NOTA-Z08699: DOTA-(Z08699)3 decreased with increasing monomer:trimer molar ratio. The tumor activity uptake and tumor-to-liver ratios were the highest for the 1:3 ratio. SPECT/CT images confirmed the biodistribution data. Imaging of HER3 expression can be improved by co-injection of a radiolabeled monomeric affibody-based imaging probe together with a trivalent affibody.


Liver/metabolism , Molecular Imaging/methods , Pancreatic Neoplasms/pathology , Peptide Fragments/immunology , Radiopharmaceuticals/metabolism , Receptor, ErbB-3/immunology , Recombinant Fusion Proteins/immunology , Animals , Apoptosis , Cell Proliferation , Humans , Liver/pathology , Mice , Mice, Inbred BALB C , Mice, Nude , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
8.
Int J Mol Sci ; 20(5)2019 Mar 02.
Article En | MEDLINE | ID: mdl-30832342

Affibody-based imaging of HER3 is a promising approach for patient stratification. We investigated the influence of a hydrophilic HEHEHE-tag ((HE)3-tag) and two different gallium-68/chelator-complexes on the biodistribution of Z08698 with the aim to improve the tracer for PET imaging. Affibody molecules (HE)3-Z08698-X and Z08698-X (X = NOTA, NODAGA) were produced and labeled with gallium-68. Binding specificity and cellular processing were studied in HER3-expressing human cancer cell lines BxPC-3 and DU145. Biodistribution was studied 3 h p.i. in Balb/c nu/nu mice bearing BxPC-3 xenografts. Mice were imaged 3 h p.i. using microPET/CT. Conjugates were stably labeled with gallium-68 and bound specifically to HER3 in vitro and in vivo. Association to cells was rapid but internalization was slow. Uptake in tissues, including tumors, was lower for (HE)3-Z08698-X than for non-tagged variants. The neutral [68Ga]Ga-NODAGA complex reduced the hepatic uptake of Z08698 compared to positively charged [68Ga]Ga-NOTA-conjugated variants. The influence of the chelator was more pronounced in variants without (HE)3-tag. In conclusion, hydrophilic (HE)3-tag and neutral charge of the [68Ga]Ga-NODAGA complex promoted blood clearance and lowered hepatic uptake of Z08698. [68Ga]Ga-(HE)3-Z08698-NODAGA was considered most promising, providing the lowest blood and hepatic uptake and the best imaging contrast among the tested variants.


Gallium Radioisotopes/pharmacokinetics , Positron-Emission Tomography/methods , Radiopharmaceuticals/pharmacokinetics , Receptor, ErbB-3/metabolism , Acetates/chemistry , Animals , Cell Line, Tumor , Chelating Agents/chemistry , Heterocyclic Compounds, 1-Ring/chemistry , Humans , Liver/metabolism , Mice , Mice, Inbred BALB C , Mice, Nude , Protein Binding , Radiopharmaceuticals/chemistry , Recombinant Fusion Proteins/chemistry , Tissue Distribution
9.
Sci Rep ; 9(1): 655, 2019 01 24.
Article En | MEDLINE | ID: mdl-30679757

Radionuclide molecular imaging of human epidermal growth factor receptor 3 (HER3) expression using affibody molecules could be used for patient stratification for HER3-targeted cancer therapeutics. We hypothesized that the properties of HER3-targeting affibody molecules might be improved through modification of the radiometal-chelator complex. Macrocyclic chelators NOTA (1,4,7-triazacyclononane-N,N',N''-triacetic acid), NODAGA (1-(1,3-carboxypropyl)-4,7-carboxymethyl-1,4,7-triazacyclononane), DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid), and DOTAGA (1,4,7,10-tetraazacyclododececane,1-(glutaric acid)-4,7,10-triacetic acid) were conjugated to the C-terminus of anti-HER3 affibody molecule Z08698 and conjugates were labeled with indium-111. All conjugates bound specifically and with picomolar affinity to HER3 in vitro. In mice bearing HER3-expressing xenografts, no significant difference in tumor uptake between the conjugates was observed. Presence of the negatively charged 111In-DOTAGA-complex resulted in the lowest hepatic uptake and the highest tumor-to-liver ratio. In conclusion, the choice of chelator influences the biodistribution of indium-111 labeled anti-HER3 affibody molecules. Hepatic uptake of anti-HER3 affibody molecules could be reduced by the increase of negative charge of the radiometal-chelator complex on the C-terminus without significantly influencing the tumor uptake.


Chelating Agents/chemistry , Gene Expression Regulation , Indium Radioisotopes , Receptor, ErbB-3/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Single Photon Emission Computed Tomography Computed Tomography , Animals , Cell Line, Tumor , Humans , Isotope Labeling , Mice , Recombinant Proteins/pharmacokinetics , Tissue Distribution
10.
Biotechnol J ; 14(4): e1800359, 2019 Apr.
Article En | MEDLINE | ID: mdl-30179307

Development of new affinity proteins using combinatorial protein engineering is today established for generation of monoclonal antibodies and also essential for discovery of binders that are based on non-immunoglobulin proteins. Phage display is most frequently used, but yeast display is becoming increasingly popular, partly due to the option of utilizing fluorescence-activated cell sorting (FACS) for isolation of new candidates. Escherichia coli has several valuable properties for library applications and in particular the high transformation efficiency. The use of various autotransporters and intimins for secretion and anchoring on the outer membrane have shown promising results and particularly for directed evolution of different enzymes. Here, the authors report on display of a large naïve affibody library on the outer membrane of E. coli using the autotransporter Adhesin Involved in Diffuse Adherence (AIDA-I). The expression cassette is first engineered by removing non-essential sequences, followed by introduction of an affibody library, comprising more than 109 variants, into the new display vector. The quality of the library and general performance of the method is assessed by FACS against five different targets, which resulted in a panel of binders with down to nanomolar affinities, suggesting that the method has potential as a complement to phage display for generation of affibody molecules.


Adhesins, Escherichia coli/genetics , Antibodies, Monoclonal/biosynthesis , Protein Engineering , Recombinant Fusion Proteins/genetics , Adhesins, Escherichia coli/biosynthesis , Adhesins, Escherichia coli/chemistry , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/genetics , Escherichia coli/chemistry , Escherichia coli/genetics , Flow Cytometry , Peptide Library , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/chemistry
11.
Cells ; 7(9)2018 Sep 18.
Article En | MEDLINE | ID: mdl-30231504

Radionuclide imaging of epidermal growth factor receptor (EGFR) expression in tumors may stratify patients for EGFR-targeting therapies and predict response or resistance to certain treatments. Affibody molecules, which are nonimmunoglobulin scaffold proteins, have a high potential as probes for molecular imaging. In this study, maleimido derivative of desferrioxamine B (DFO) chelator was site-specifically coupled to the C-terminal cysteine of the anti-EGFR affibody molecule ZEGFR:2377, and the DFO-ZEGFR:2377 conjugate was labeled with the generator-produced positron-emitting radionuclide 68Ga. Stability, specificity of binding to EGFR-expressing cells, and processing of [68Ga]Ga-DFO-ZEGFR:2377 by cancer cells after binding were evaluated in vitro. In vivo studies were performed in nude mice bearing human EGFR-expressing A431 epidermoid cancer xenografts. The biodistribution of [68Ga]Ga-DFO-ZEGFR:2377 was directly compared with the biodistribution of [89Zr]Zr-DFO-ZEGFR:2377. DFO-ZEGFR: 2377 was efficiently (isolated yield of 73 ± 3%) and stably labeled with 68Ga. Binding of [68Ga]Ga-DFO-ZEGFR:2377 to EGFR-expressing cells in vitro was receptor-specific and proportional to the EGFR expression level. In vivo saturation experiment demonstrated EGFR-specific accumulation of [68Ga]Ga-DFO-ZEGFR:2377 in A431 xenografts. Compared to [89Zr]Zr-DFO-ZEGFR:2377, [68Ga]Ga-DFO-ZEGFR:2377 demonstrated significantly (p < 0.05) higher uptake in tumors and lower uptake in spleen and bones. This resulted in significantly higher tumor-to-organ ratios for [68Ga]Ga-DFO-ZEGFR:2377. In conclusion, [68Ga]Ga-DFO-ZEGFR:2377 is a promising probe for imaging of EGFR expression.

12.
Amino Acids ; 50(8): 981-994, 2018 Aug.
Article En | MEDLINE | ID: mdl-29728916

Epidermal growth factor receptor (EGFR) is overexpressed in a number of cancers and is the molecular target for several anti-cancer therapeutics. Radionuclide molecular imaging of EGFR expression should enable personalization of anti-cancer treatment. Affibody molecule is a promising type of high-affinity imaging probes based on a non-immunoglobulin scaffold. A series of derivatives of the anti-EGFR affibody molecule ZEGFR:2377, having peptide-based cysteine-containing chelators for conjugation of 99mTc, was designed and evaluated. It was found that glutamate-containing chelators Gly-Gly-Glu-Cys (GGEC), Gly-Glu-Glu-Cys (GEEC) and Glu-Glu-Glu-Cys (EEEC) provide the best labeling stability. The glutamate containing conjugates bound to EGFR-expressing cells specifically and with high affinity. Specific targeting of EGFR-expressing xenografts in mice was demonstrated. The number of glutamate residues in the chelator had strong influence on biodistribution of radiolabeled affibody molecules. Increase of glutamate content was associated with lower uptake in normal tissues. The 99mTc-labeled variant containing the EEEC chelator provided the highest tumor-to-organ ratios. In conclusion, optimizing the composition of peptide-based chelators enhances contrast of imaging of EGFR-expression using affibody molecules.


Molecular Imaging , Molecular Probes/chemistry , Molecular Probes/pharmacokinetics , Animals , Cell Line, Tumor , Chelating Agents , Cysteine , ErbB Receptors/analysis , ErbB Receptors/biosynthesis , ErbB Receptors/chemistry , Humans , Mice , Molecular Imaging/methods , Neoplasm Transplantation , Neoplasms/metabolism , Peptides , Recombinant Fusion Proteins/analysis , Recombinant Fusion Proteins/chemistry , Technetium , Tissue Distribution
13.
Mol Pharm ; 15(1): 175-185, 2018 01 02.
Article En | MEDLINE | ID: mdl-29160082

Zirconium-89 is an emerging radionuclide for positron emission tomography (PET) especially for biomolecules with slow pharmacokinetics as due to its longer half-life, in comparison to fluorine-18 and gallium-68, imaging at late time points is feasible. Desferrioxamine B (DFO), a linear bifunctional chelator (BFC) is mostly used for this radionuclide so far but shows limitations regarding stability. Our group recently reported on fusarinine C (FSC) with similar zirconium-89 complexing properties but potentially higher stability related to its cyclic structure. This study was designed to compare FSC and DFO head-to-head as bifunctional chelators for 89Zr-radiolabeled EGFR-targeting ZEGFR:2377 affibody bioconjugates. FSC-ZEGFR: 2377 and DFO-ZEGFR:2377 were evaluated regarding radiolabeling, in vitro stability, specificity, cell uptake, receptor affinity, biodistribution, and microPET-CT imaging. Both conjugates were efficiently labeled with zirconium-89 at room temperature but radiochemical yields increased substantially at elevated temperature, 85 °C. Both 89Zr-FSC-ZEGFR:2377 and 89Zr-DFO-ZEGFR:2377 revealed remarkable specificity, affinity and slow cell-line dependent internalization. Radiolabeling at 85 °C showed comparable results in A431 tumor xenografted mice with minor differences regarding blood clearance, tumor and liver uptake. In comparison 89Zr-DFO-ZEGFR:2377, radiolabeled at room temperature, showed a significant difference regarding tumor-to-organ ratios. MicroPET-CT imaging studies of 89Zr-FSC-ZEGFR:2377 as well as 89Zr-DFO-ZEGFR:2377 confirmed these findings. In summary we were able to show that FSC is a suitable alternative to DFO for radiolabeling of biomolecules with zirconium-89. Furthermore, our findings indicate that 89Zr-radiolabeling of DFO conjugates at higher temperature reduces off-chelate binding leading to significantly improved tumor-to-organ ratios and therefore enhancing image contrast.


Chelating Agents/chemistry , ErbB Receptors/chemistry , Radioisotopes/chemistry , Zirconium/chemistry , Animals , Autoradiography , Cell Line, Tumor , Chromatography, High Pressure Liquid , Deferoxamine/chemistry , Electrophoresis, Polyacrylamide Gel , Female , Ferric Compounds/chemistry , Humans , Hydroxamic Acids/chemistry , Mice , Mice, Inbred BALB C , Positron-Emission Tomography/methods , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Xenograft Model Antitumor Assays
14.
Int J Oncol ; 51(6): 1765-1774, 2017 Dec.
Article En | MEDLINE | ID: mdl-29039474

The human epidermal growth factor receptor 3 (HER3) is involved in the development of cancer resistance towards tyrosine kinase-targeted therapies. Several HER3­targeting therapeutics are currently under clinical evaluation. Non-invasive imaging of HER3 expression could improve patient management. Affibody molecules are small engineered scaffold proteins demonstrating superior properties as targeting probes for molecular imaging compared with monoclonal antibodies. Feasibility of in vivo HER3 imaging using affibody molecules has been previously demonstrated. Preclinical studies have shown that the contrast when imaging using anti-HER3 affibody molecules can be improved over time. We aim to develop an agent for PET imaging of HER3 expression using the long-lived positron-emitting radionuclide cobalt-55 (55Co) (T1/2=17.5 h). A long-lived cobalt isotope 57Co was used as a surrogate for 55Co in this study. The anti-HER3 affibody molecule HEHEHE-ZHER3-NOTA was labelled with radiocobalt with high yield, purity and stability. Biodistribution of 57Co-HEHEHE-ZHER3-NOTA was measured in mice bearing DU145 (prostate carcinoma) and LS174T (colorectal carcinoma) xenografts at 3 and 24 h post injection (p.i.). Tumour-to-blood ratios significantly increased between 3 and 24 h p.i. (p<0.05). At 24 h p.i., tumour-to-blood ratios were 6 for DU145 and 8 for LS174T xenografts, respectively. HER3­expressing xenografts were clearly visualized in a preclinical imaging setting already 3 h p.i., and contrast further improved at 24 h p.i. In conclusion, the radiocobalt-labelled anti-HER3 affibody molecule, HEHEHE-ZHER3-NOTA, is a promising tracer for imaging of HER3 expression in tumours.


Cobalt Radioisotopes , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/enzymology , Radiopharmaceuticals , Receptor, ErbB-3/analysis , Receptor, ErbB-3/biosynthesis , Animals , Cell Line, Tumor , Colorectal Neoplasms/diagnostic imaging , Colorectal Neoplasms/enzymology , Female , Heterocyclic Compounds , Heterocyclic Compounds, 1-Ring , Heterografts , Humans , Male , Mice , Mice, Inbred BALB C , Positron-Emission Tomography/methods , Radioligand Assay/methods
15.
Sci Rep ; 7(1): 5961, 2017 07 20.
Article En | MEDLINE | ID: mdl-28729680

Several anti-cancer therapies target the epidermal growth factor receptor (EGFR). Radionuclide imaging of EGFR expression in tumours may aid in selection of optimal cancer therapy. The 111In-labelled DOTA-conjugated ZEGFR:2377 Affibody molecule was successfully used for imaging of EGFR-expressing xenografts in mice. An optimal combination of radionuclide, chelator and targeting protein may further improve the contrast of radionuclide imaging. The aim of this study was to evaluate the targeting properties of radiocobalt-labelled DOTA-ZEGFR:2377. DOTA-ZEGFR:2377 was labelled with 57Co (T1/2 = 271.8 d), 55Co (T1/2 = 17.5 h), and, for comparison, with the positron-emitting radionuclide 68Ga (T1/2 = 67.6 min) with preserved specificity of binding to EGFR-expressing A431 cells. The long-lived cobalt radioisotope 57Co was used in animal studies. Both 57Co-DOTA-ZEGFR:2377 and 68Ga-DOTA-ZEGFR:2377 demonstrated EGFR-specific accumulation in A431 xenografts and EGFR-expressing tissues in mice. Tumour-to-organ ratios for the radiocobalt-labelled DOTA-ZEGFR:2377 were significantly higher than for the gallium-labelled counterpart already at 3 h after injection. Importantly, 57Co-DOTA-ZEGFR:2377 demonstrated a tumour-to-liver ratio of 3, which is 7-fold higher than the tumour-to-liver ratio for 68Ga-DOTA-ZEGFR:2377. The results of this study suggest that the positron-emitting cobalt isotope 55Co would be an optimal label for DOTA-ZEGFR:2377 and further development should concentrate on this radionuclide as a label.


Coordination Complexes/chemistry , ErbB Receptors/metabolism , Heterocyclic Compounds, 1-Ring/chemistry , Imaging, Three-Dimensional , Radioisotopes/chemistry , Recombinant Fusion Proteins/metabolism , Animals , Cell Line, Tumor , Female , Mice, Inbred BALB C , Mice, Nude , Positron-Emission Tomography , Tissue Distribution , Tomography, X-Ray Computed , Xenograft Model Antitumor Assays
16.
Protein Eng Des Sel ; 30(9): 593-601, 2017 09 01.
Article En | MEDLINE | ID: mdl-28472513

The interaction between the Staphylococcal Protein A (SpA) domain B (the basis of the Affibody) molecule and the Fc of IgG is key to the use of Affibodies in affinity chromatography and in potential therapies against certain inflammatory diseases. Despite its importance and four-decade history, to our knowledge this interaction has never been affinity matured. We elucidate reasons why single-substitutions in the SpA which improve affinity to Fc may be very rare, and also discover substitutions which potentially serve several engineering purposes. We used a variation of FoldX to predict changes in protein-protein-binding affinity, and produce a list of 41 single-amino acid substitutions on the SpA molecule, of which four are near wild type (wt) and five are at most a factor of four from wt affinity. The nine substitutions include one which removes lysine, and several others which change charge. Subtle modulations in affinity may be useful for modifying column elution conditions. The method is applicable to other protein-protein systems, providing molecular insights with lower workload than existing experimental techniques.


Amino Acid Substitution , Immunoglobulin Fc Fragments/chemistry , Lysine/chemistry , Staphylococcal Protein A/chemistry , Antibody Affinity , Binding Sites , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Humans , Hydrophobic and Hydrophilic Interactions , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/metabolism , Kinetics , Lysine/metabolism , Models, Molecular , Plasmids/chemistry , Plasmids/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Staphylococcal Protein A/genetics , Staphylococcal Protein A/metabolism , Staphylococcus aureus/chemistry , Static Electricity , Thermodynamics
17.
Int J Oncol ; 49(6): 2285-2293, 2016 Dec.
Article En | MEDLINE | ID: mdl-27748899

The epidermal growth factor receptor (EGFR) is overexpressed in a number of malignant tumors and is a molecular target for several specific anticancer antibodies and tyrosine kinase inhibitors. The overexpression of EGFR is a predictive biomarker for response to several therapy regimens. Radionuclide molecular imaging might enable detection of EGFR overexpression by a non-invasive procedure and could be used repeatedly. Affibody molecules are engineered scaffold proteins, which could be selected to have a high affinity and selectivity to predetermined targets. The anti-EGFR ZEGFR:2377 affibody molecule is a potential imaging probe for EGFR detection. The use of the generator-produced radionuclide 99mTc should facilitate clinical translation of an imaging probe due to its low price, availability and favorable dosimetry of the radionuclide. In the present study, we evaluated feasibility of ZEGFR:2377 labeling with 99mTc using a peptide-based cysteine-containing chelator expressed at the C-terminus of ZEGFR:2377. The label was stable in vitro under cysteine challenge. In addition, 99mTc-ZEGFR:2377 was capable of specific binding to EGFR-expressing cells with high affinity (274 pM). Studies in BALB/C nu/nu mice bearing A431 xenografts demonstrated that 99mTc-ZEGFR:2377 accumulates in tumors in an EGFR-specific manner. The tumor uptake values were 3.6±1 and 2.5±0.4% ID/g at 3 and 24 h after injection, respectively. The corresponding tumor-to-blood ratios were 1.8±0.4 and 8±3. The xenografts were clearly visualized at both time-points. This study demonstrated the potential of 99mTc-labeled ZEGFR:2377 for imaging of EGFR in vivo.


ErbB Receptors/metabolism , Molecular Imaging/methods , Radioisotopes/metabolism , Radionuclide Imaging/methods , Recombinant Fusion Proteins/metabolism , Technetium/metabolism , Animals , Cell Line, Tumor , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Transplantation , Transplantation, Heterologous
18.
Mol Pharm ; 13(11): 3676-3687, 2016 11 07.
Article En | MEDLINE | ID: mdl-27529191

Overexpression of the enzyme carbonic anhydrase IX (CAIX) is documented for chronically hypoxic malignant tumors as well as for normoxic renal cell carcinoma. Radionuclide molecular imaging of CAIX would be useful for detection of hypoxic areas in malignant tumors, for patients' stratification for CAIX-targeted therapies, and for discrimination of primary malignant and benign renal tumors. Earlier, we have reported feasibility of in vivo radionuclide based imaging of CAIX expressing tumors using Affibody molecules, small affinity proteins based on a nonimmunoglobulin scaffold. In this study, we compared imaging properties of several anti-CAIX Affibody molecules having identical scaffold parts and competing for the same epitope on CAIX, but having different binding paratopes. Four variants were labeled using residualizing 99mTc and nonresidualizing 125I labels. All radiolabeled variants demonstrated high-affinity detection of CAIX-expressing cell line SK-RC-52 in vitro and specific accumulation in SK-RC-52 xenografts in vivo. 125I-labeled conjugates demonstrated much lower radioactivity uptake in kidneys but higher radioactivity concentration in blood compared with 99mTc-labeled counterparts. Although all variants cleared rapidly from blood and nonspecific compartments, there was noticeable difference in their biodistribution. The best variant for imaging of expression of CAIX in disseminated cancer was 99mTc-(HE)3-ZCAIX:2 providing tumor uptake of 16.3 ± 0.9% ID/g and tumor-to-blood ratio of 44 ± 7 at 4 h after injection. For primary renal cell carcinoma, the most promising imaging candidate was 125I-ZCAIX:4 providing tumor-kidney ratio of 2.1 ± 0.5. In conclusion, several clones of scaffold proteins should be evaluated to select the best variant for development of an imaging probe with optimal sensitivity for the intended application.


Carbonic Anhydrase IX/metabolism , Carcinoma, Renal Cell/diagnostic imaging , Carcinoma, Renal Cell/metabolism , Kidney Neoplasms/diagnostic imaging , Kidney Neoplasms/metabolism , Animals , Cell Line, Tumor , Female , Heterografts , Humans , Mice , Mice, Inbred BALB C , Radiopharmaceuticals/analysis
19.
Int J Oncol ; 48(4): 1325-32, 2016 Apr.
Article En | MEDLINE | ID: mdl-26847636

Epidermal growth factor receptor (EGFR) is a transmembrane tyrosine kinase receptor, which is overexpressed in many types of cancer. The use of EGFR-targeting monoclonal antibodies and tyrosine-kinase inhibitors improves significantly survival of patients with colorectal, non-small cell lung cancer and head and neck squamous cell carcinoma. Detection of EGFR overexpression provides important prognostic and predictive information influencing management of the patients. The use of radionuclide molecular imaging would enable non-invasive repeatable determination of EGFR expression in disseminated cancer. Moreover, positron emission tomography (PET) would provide superior sensitivity and quantitation accuracy in EGFR expression imaging. Affibody molecules are a new type of imaging probes, providing high contrast in molecular imaging. In the present study, an EGFR-binding affibody molecule (ZEGFR:2377) was site-specifically conjugated with a deferoxamine (DFO) chelator and labelled under mild conditions (room temperature and neutral pH) with a positron-emitting radionuclide (89)Zr. The (89)Zr-DFO-ZEGFR:2377 tracer demonstrated specific high affinity (160 ± 60 pM) binding to EGFR-expressing A431 epidermoid carcinoma cell line. In mice bearing A431 xenografts, (89)Zr-DFO-ZEGFR:2377 demonstrated specific uptake in tumours and EGFR-expressing tissues. The tracer provided tumour uptake of 2.6 ± 0.5% ID/g and tumour-to-blood ratio of 3.7 ± 0.6 at 24 h after injection. (89)Zr-DFO-ZEGFR:2377 provides higher tumour-to-organ ratios than anti-EGFR antibody (89)Zr-DFO-cetuximab at 48 h after injection. EGFR­expressing tumours were clearly visualized by microPET using (89)Zr-DFO-ZEGFR:2377 at both 3 and 24 h after injection. In conclusion, 8(9)Zr-DFO-ZEGFR:2377 is a potential probe for PET imaging of EGFR-expression in vivo.


Antibodies, Monoclonal/administration & dosage , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , ErbB Receptors/biosynthesis , Molecular Imaging , Animals , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Gene Expression Regulation, Neoplastic , Humans , Mice , Positron-Emission Tomography , Xenograft Model Antitumor Assays , Zirconium/chemistry
20.
Sci Rep ; 5: 15226, 2015 Oct 19.
Article En | MEDLINE | ID: mdl-26477646

Human epidermal growth factor receptor 3 (HER3) is involved in the progression of various cancers and in resistance to therapies targeting the HER family. In vivo imaging of HER3 expression would enable patient stratification for anti-HER3 immunotherapy. Key challenges with HER3-targeting are the relatively low expression in HER3-positive tumours and HER3 expression in normal tissues. The use of positron-emission tomography (PET) provides advantages of high resolution, sensitivity and quantification accuracy compared to SPECT. Affibody molecules, imaging probes based on a non-immunoglobulin scaffold, provide high imaging contrast shortly after injection. The aim of this study was to evaluate feasibility of PET imaging of HER3 expression using (68)Ga-labeled affibody molecules. The anti-HER3 affibody molecule HEHEHE-Z08698-NOTA was successfully labelled with (68)Ga with high yield, purity and stability. The agent bound specifically to HER3-expressing cancer cells in vitro and in vivo. At 3 h pi, uptake of (68)Ga-HEHEHE-Z08698-NOTA was significantly higher in xenografts with high HER3 expression (BT474, BxPC-3) than in xenografts with low HER3 expression (A431). In xenografts with high expression, tumour-to-blood ratios were >20, tumour-to-muscle >15, and tumour-to-bone >7. HER3-positive xenografts were visualised using microPET 3 h pi. In conclusion, PET imaging of HER3 expression is feasible using (68)Ga-HEHEHE-Z08698-NOTA shortly after administration.


Molecular Probes , Neoplasms/diagnosis , Positron-Emission Tomography/methods , Receptor, ErbB-3/antagonists & inhibitors , Recombinant Fusion Proteins , Animals , Cell Line, Tumor , Disease Models, Animal , Gallium Radioisotopes , Heterografts , Humans , Isotope Labeling , Molecular Probes/metabolism , Neoplasms/metabolism , Protein Binding , Recombinant Fusion Proteins/metabolism , Tissue Distribution , Tomography, X-Ray Computed
...