Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 127
1.
J Intern Med ; 295(1): 91-102, 2024 01.
Article En | MEDLINE | ID: mdl-38018736

Autonomic dysfunction is a clinical hallmark of infection caused by SARS-CoV-2, but the underlying mechanisms are unknown. The vagus nerve inflammatory reflex is an important, well-characterized mechanism for the reflexive suppression of cytokine storm, and its experimental or clinical impairment facilitates the onset and progression of hyperinflammation. Recent pathological evidence from COVID-19 victims reveals viral infection and inflammation in the vagus nerve and associated nuclei in the medulla oblongata. Although it has been suggested that vagus nerve inflammation in these patients mediates dysregulated respiration, whether it also contributes to dysfunction of the vagus nerve inflammatory reflex has not been addressed. Because lethality and tissue injury in acute COVID-19 are characterized by cytokine storm, it is plausible to consider evidence that impairment of the inflammatory reflex may contribute to overproduction of cytokines and resultant hyperinflammatory pathogenesis. Accordingly, here the authors discuss the inflammatory reflex, the consequences of its dysfunction in COVID-19, and whether there are opportunities for therapeutic intervention.


COVID-19 , Humans , COVID-19/complications , SARS-CoV-2 , Cytokine Release Syndrome/etiology , Inflammation , Cytokines , Reflex/physiology , Vagus Nerve/physiology
2.
BMC Nurs ; 22(1): 485, 2023 Dec 19.
Article En | MEDLINE | ID: mdl-38115025

BACKGROUND: Medicine is facing a global shortage of nurses, including those with postgraduate education. One suggested educational method for undergraduate and postgraduate education, such as specialist ambulance nurse education, is simulation-based education (SBE). The implementation of SBE is motivated, in part, by the desire to attract and retain students, but also to contribute to student learning. Consequently, the use of SBE is increasing in specialist ambulance nurse education. The aim of this study was to explore how specialist ambulance nursing students experience SBE. METHODS: This qualitative survey study involved the collection of study data using a purposefully designed, paper-based survey comprising five open-ended questions that required participant free-text answers. The answers were analysed using inductive content analysis and searching for descriptions of the participants' experiences. The survey was presented to 35 specialist ambulance nursing students. RESULTS: The results are presented in two themes: SBE as learning and SBE as an educational method. Participating in SBE during the programme provides students with a realistic understanding of their future profession and its expected demands. The learning experience disregards prior work experience in ambulance services. CONCLUSIONS: Based on the findings, conclusions are that SBE is an appreciated educational method among nursing students, regardless of their prior experience in the field of prehospital care. To some extent, this differs from previous research findings related to this subject. Furthermore, SBE contributes to the provision of field work insights, preparing the ambulance nurse specialist students.

4.
Nutrients ; 15(14)2023 Jul 18.
Article En | MEDLINE | ID: mdl-37513606

Hyperhomocysteinemia (HHcy) worsens cardiovascular outcomes by impairing vascular function and promoting chronic inflammation via release of danger-associated molecular patterns, such as high-mobility group box-1 (HMGB-1). Elevated levels of HMGB-1 have recently been reported in patients with HHcy. Therefore, targeting HMGB-1 may be a potential therapy to improve HHcy-induced cardiovascular pathologies. This study aimed to further elucidate HMGB-1's role during acute HHcy and HHcy-induced atherogenesis and to determine if inhibiting HMGB-1 with glycyrrhizic acid (Glyz) improved vascular function. Male New Zealand White rabbits (n = 25) were placed on either a standard control chow (CD; n = 15) or atherogenic diet (AD; n = 10) for 4 weeks. Rabbit serum and Krebs taken from organ bath studies were collected to quantify HMGB-1 levels. Isometric tension analysis was performed on abdominal aorta (AA) rings from CD and AD rabbits. Rings were incubated with homocysteine (Hcy) [3 mM] for 60 min to induce acute HHcy or rhHMGB-1 [100 nM]. Vascular function was assessed by relaxation to cumulative doses of acetylcholine. Markers of vascular dysfunction and inflammation were quantified in the endothelium, media, and adventitia of AA rings. HMGB-1 was significantly upregulated in serum (p < 0.0001) and Krebs (p < 0.0001) after Hcy exposure or an AD. Incubation with Hcy (p < 0.0001) or rhHMGB-1 (p < 0.0001) and an AD (p < 0.0001) significantly reduced relaxation to acetylcholine, which was markedly improved by Glyz. HMGB-1 expression was elevated (p < 0.0001) after Hcy exposure and AD (p < 0.0001) and was normalized after Glyz treatment. Moreover, markers of vascular function, cell stress and inflammation were also reduced after Glyz. These results demonstrate that HMGB-1 has a central role during HHcy-induced vascular dysfunction and inhibiting it with Glyz could be a potential treatment option for cardiovascular diseases.


Atherosclerosis , Hyperhomocysteinemia , Male , Rabbits , Animals , Acetylcholine/pharmacology , Glycyrrhizic Acid/pharmacology , Inflammation/metabolism , HMGB Proteins , Hyperhomocysteinemia/complications , Hyperhomocysteinemia/drug therapy , Homocysteine
5.
Bioelectron Med ; 8(1): 16, 2022 Oct 05.
Article En | MEDLINE | ID: mdl-36195968

BACKGROUND: Neuroinflammation is an important driver of acute and chronic pain states. Therefore, targeting molecular mediators of neuroinflammation may present an opportunity for developing novel pain therapies. In preclinical models of neuroinflammatory pain, calcitonin gene-related peptide (CGRP), substance P and high mobility group box 1 protein (HMGB1) are molecules synthesized and released by sensory neurons which activate inflammation and pain. High-frequency electrical nerve stimulation (HFES) has achieved clinical success as an analgesic modality, but the underlying mechanism is unknown. Here, we reasoned that HFES inhibits neuroinflammatory mediator release by sensory neurons to reduce pain. METHODS: Utilizing in vitro and in vivo assays, we assessed the modulating effects of HFES on neuroinflammatory mediator release by activated sensory neurons. Dorsal root ganglia (DRG) neurons harvested from wildtype or transgenic mice expressing channelrhodopsin-2 (ChR2) were cultured on micro-electrode arrays, and effect of HFES on optogenetic- or capsaicin-induced neuroinflammatory mediator release was determined. Additionally, the effects of HFES on local neuroinflammatory mediator release and hyperalgesia was assessed in vivo using optogenetic paw stimulation and the neuropathic pain model of chronic constriction injury (CCI) of the sciatic nerve. RESULTS: Light- or capsaicin-evoked neuroinflammatory mediator release from cultured transgenic DRG sensory neurons was significantly reduced by concurrent HFES (10 kHz). In agreement with these findings, elevated levels of neuroinflammatory mediators were detected in the affected paw following optogenetic stimulation or CCI and were significantly attenuated using HFES (20.6 kHz for 10 min) delivered once daily for 3 days. CONCLUSION: These studies reveal a previously unidentified mechanism for the pain-modulating effect of HFES in the setting of acute and chronic nerve injury. The results support the mechanistic insight that HFES may reset sensory neurons into a less pro-inflammatory state via inhibiting the release of neuroinflammatory mediators resulting in reduced inflammation and pain.

6.
Mol Med ; 28(1): 57, 2022 05 16.
Article En | MEDLINE | ID: mdl-35578169

BACKGROUND: Severe COVID-19 is characterized by pro-inflammatory cytokine release syndrome (cytokine storm) which causes high morbidity and mortality. Recent observational and clinical studies suggest famotidine, a histamine 2 receptor (H2R) antagonist widely used to treat gastroesophageal reflux disease, attenuates the clinical course of COVID-19. Because evidence is lacking for a direct antiviral activity of famotidine, a proposed mechanism of action is blocking the effects of histamine released by mast cells. Here we hypothesized that famotidine activates the inflammatory reflex, a brain-integrated vagus nerve mechanism which inhibits inflammation via alpha 7 nicotinic acetylcholine receptor (α7nAChR) signal transduction, to prevent cytokine storm. METHODS: The potential anti-inflammatory effects of famotidine and other H2R antagonists were assessed in mice exposed to lipopolysaccharide (LPS)-induced cytokine storm. As the inflammatory reflex is integrated and can be stimulated in the brain, and H2R antagonists penetrate the blood brain barrier poorly, famotidine was administered by intracerebroventricular (ICV) or intraperitoneal (IP) routes. RESULTS: Famotidine administered IP significantly reduced serum and splenic LPS-stimulated tumor necrosis factor (TNF) and IL-6 concentrations, significantly improving survival. The effects of ICV famotidine were significantly more potent as compared to the peripheral route. Mice lacking mast cells by genetic deletion also responded to famotidine, indicating the anti-inflammatory effects are not mast cell-dependent. Either bilateral sub-diaphragmatic vagotomy or genetic knock-out of α7nAChR abolished the anti-inflammatory effects of famotidine, indicating the inflammatory reflex as famotidine's mechanism of action. While the structurally similar H2R antagonist tiotidine displayed equivalent anti-inflammatory activity, the H2R antagonists cimetidine or ranitidine were ineffective even at very high dosages. CONCLUSIONS: These observations reveal a previously unidentified vagus nerve-dependent anti-inflammatory effect of famotidine in the setting of cytokine storm which is not replicated by high dosages of other H2R antagonists in clinical use. Because famotidine is more potent when administered intrathecally, these findings are also consistent with a primarily central nervous system mechanism of action.


COVID-19 , Famotidine , Animals , Anti-Inflammatory Agents , Cytokine Release Syndrome , Famotidine/pharmacology , Histamine , Histamine H2 Antagonists , Lipopolysaccharides , Mice , Reflex , Vagus Nerve , alpha7 Nicotinic Acetylcholine Receptor
7.
Res Sq ; 2022 Apr 11.
Article En | MEDLINE | ID: mdl-35441176

Background. Severe COVID-19 is characterized by pro-inflammatory cytokine release syndrome (cytokine storm) which causes high morbidity and mortality. Recent observational and clinical studies suggest famotidine, a histamine 2 receptor (H2R) antagonist widely used to treat gastroesophageal reflux disease , attenuates the clinical course of COVID-19. Because evidence is lacking for a direct antiviral activity of famotidine, a proposed mechanism of action is blocking the effects of histamine released by mast cells. Here we hypothesized that famotidine activates the inflammatory reflex, a brain-integrated vagus nerve mechanism which inhibits inflammation via alpha 7 nicotinic acetylcholine receptor ( α7nAChR ) signal transduction, to prevent cytokine storm. Methods. The potential anti-inflammatory effects of famotidine and other H2R antagonists was assessed in mice exposed to lipopolysaccharide (LPS)-induced cytokine storm. As the inflammatory reflex is integrated and can be stimulated in the brain, and H2R antagonists penetrate the blood brain barrier poorly, famotidine was administered by intracerebroventricular (ICV) or intraperitoneal (IP) routes. Results. Famotidine administered IP significantly reduced serum and splenic LPS-stimulated tumor necrosis factor α and interleukin-6 concentrations, significantly improving survival. The effects of ICV famotidine were significantly more potent as compared to the peripheral route. Mice lacking mast cells by genetic deletion also responded to famotidine, indicating the anti-inflammatory effects are not mast cell dependent. Either bilateral sub-diaphragmatic vagotomy or genetic knock-out of α7nAChR abolished the anti-inflammatory effects of famotidine, indicating the inflammatory reflex as famotidine's mechanism of action. While the structurally similar H2R antagonist tiotidine displayed equivalent anti-inflammatory activity, the H2R antagonists cimetidine or ranitidine were ineffective even at very high dosages. Conclusions. These observations reveal a previously unidentified vagus nerve-dependent anti-inflammatory effect of famotidine in the setting of cytokine storm which is not replicated by high dosages of other H2R antagonists in clinical use. Because famotidine is more potent when administered intrathecally, these findings are also consistent with a primarily central nervous system mechanism of action.

8.
Blood ; 139(21): 3181-3193, 2022 05 26.
Article En | MEDLINE | ID: mdl-35040907

Anemia of inflammation, also known as anemia of chronic disease, is refractory to erythropoietin (EPO) treatment, but the mechanisms underlying the EPO refractory state are unclear. Here, we demonstrate that high mobility group box-1 protein (HMGB1), a damage-associated molecular pattern molecule recently implicated in anemia development during sepsis, leads to reduced expansion and increased death of EPO-sensitive erythroid precursors in human models of erythropoiesis. HMGB1 significantly attenuates EPO-mediated phosphorylation of the Janus kinase 2/STAT5 and mTOR signaling pathways. Genetic ablation of receptor for advanced glycation end products, the only known HMGB1 receptor expressed by erythroid precursors, does not rescue the deleterious effects of HMGB1 on EPO signaling, either in human or murine precursors. Furthermore, surface plasmon resonance studies highlight the ability of HMGB1 to interfere with the binding between EPO and the EPOR. Administration of a monoclonal anti-HMGB1 antibody after sepsis onset in mice partially restores EPO signaling in vivo. Thus, HMGB1-mediated restriction of EPO signaling contributes to the chronic phase of anemia of inflammation.


Anemia , Erythropoietin , HMGB1 Protein , Sepsis , Anemia/genetics , Animals , Erythropoiesis/genetics , Erythropoietin/metabolism , Inflammation , Mice , Receptors, Erythropoietin/metabolism , Sepsis/complications
9.
J Intensive Med ; 2(3): 156-166, 2022 Jul.
Article En | MEDLINE | ID: mdl-36789020

Gram-negative sepsis is a severe clinical syndrome associated with significant morbidity and mortality. Lipopolysaccharide (LPS), expressed on Gram-negative bacteria, is a potent pro-inflammatory toxin that induces inflammation and coagulation via two separate receptor systems. One is Toll-like receptor 4 (TLR4), expressed on cell surfaces and in endosomes, and the other is the cytosolic receptor caspase-11 (caspases-4 and -5 in humans). Extracellular LPS binds to high mobility group box 1 (HMGB1) protein, a cytokine-like molecule. The HMGB1-LPS complex is transported via receptor for advanced glycated end products (RAGE)-endocytosis to the endolysosomal system to reach the cytosolic LPS receptor caspase-11 to induce HMGB1 release, inflammation, and coagulation that may cause multi-organ failure. The insight that LPS needs HMGB1 assistance to generate severe inflammation has led to successful therapeutic results in preclinical Gram-negative sepsis studies targeting HMGB1. However, to date, no clinical studies have been performed based on this strategy. HMGB1 is also actively released by peripheral sensory nerves and this mechanism is fundamental for the initiation and propagation of inflammation during tissue injury. Homeostasis is achieved when other neurons actively restrict the inflammatory response via monitoring by the central nervous system and the vagus nerve through the cholinergic anti-inflammatory pathway. The neuronal control in Gram-negative sepsis needs further studies since a deeper understanding of the interplay between HMGB1 and acetylcholine may have beneficial therapeutic implications. Herein, we review the synergistic overlapping mechanisms of LPS and HMGB1 and discuss future treatment opportunities in Gram-negative sepsis.

10.
Cells ; 10(12)2021 11 26.
Article En | MEDLINE | ID: mdl-34943830

High mobility group box 1 protein (HMGB1), a highly conserved nuclear DNA-binding protein, is a "damage-associated molecular pattern" molecule (DAMP) implicated in both stimulating and inhibiting innate immunity. As reviewed here, HMGB1 is an oxidation-reduction sensitive DAMP bearing three cysteines, and the post-translational modification of these residues establishes its proinflammatory and anti-inflammatory activities by binding to different extracellular cell surface receptors. The redox-sensitive signaling mechanisms of HMGB1 also occupy an important niche in innate immunity because HMGB1 may carry other DAMPs and pathogen-associated molecular pattern molecules (PAMPs). HMGB1 with DAMP/PAMP cofactors bind to the receptor for advanced glycation end products (RAGE) which internalizes the HMGB1 complexes by endocytosis for incorporation in lysosomal compartments. Intra-lysosomal HMGB1 disrupts lysosomal membranes thereby releasing the HMGB1-transported molecules to stimulate cytosolic sensors that mediate inflammation. This HMGB1-DAMP/PAMP cofactor pathway slowed the development of HMGB1-binding antagonists for diagnostic or therapeutic use. However, recent discoveries that HMGB1 released from neurons mediates inflammation via the TLR4 receptor system, and that cancer cells express fully oxidized HMGB1 as an immunosuppressive mechanism, offer new paths to targeting HMGB1 for inflammation, pain, and cancer.


Disulfides/metabolism , HMGB1 Protein/metabolism , Inflammation/metabolism , Protein Processing, Post-Translational , Animals , COVID-19/metabolism , Humans , Sensory Receptor Cells/metabolism
11.
Cells ; 10(10)2021 10 18.
Article En | MEDLINE | ID: mdl-34685772

Recent data show that activation of nociceptive (sensory) nerves turns on localized inflammation within the innervated area in a retrograde manner (antidromically), even in the absence of tissue injury or molecular markers of foreign invaders. This neuroinflammatory process is activated and sustained by the release of neuronal products, such as neuropeptides, with the subsequent amplification via recruitment of immunocompetent cells, including macrophages and lymphocytes. High mobility group box 1 protein (HMGB1) is a highly conserved, well characterized damage-associated molecular pattern molecule expressed by many cells, including nociceptors and is a marker of inflammatory diseases. In this review, we summarize recent evidence showing that neuronal HMGB1 is required for the development of neuroinflammation, as knock out limited to neurons or its neutralization via antibodies ameliorate injury in models of nerve injury and of arthritis. Further, the results of study show that HMGB1 is actively released during neuronal depolarization and thus plays a previously unrecognized key etiologic role in the initiation and amplification of neuroinflammation. Direct targeting of HMGB1 is a promising approach for novel anti-inflammatory therapy.


HMGB1 Protein/metabolism , Inflammation/metabolism , Inflammation/pathology , Neurons/metabolism , Animals , Humans , Models, Biological , Nociception , Toll-Like Receptor 4/metabolism
12.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Article En | MEDLINE | ID: mdl-34385304

Inflammation, the body's primary defensive response system to injury and infection, is triggered by molecular signatures of microbes and tissue injury. These molecules also stimulate specialized sensory neurons, termed nociceptors. Activation of nociceptors mediates inflammation through antidromic release of neuropeptides into infected or injured tissue, producing neurogenic inflammation. Because HMGB1 is an important inflammatory mediator that is synthesized by neurons, we reasoned nociceptor release of HMGB1 might be a component of the neuroinflammatory response. In support of this possibility, we show here that transgenic nociceptors expressing channelrhodopsin-2 (ChR2) directly release HMGB1 in response to light stimulation. Additionally, HMGB1 expression in neurons was silenced by crossing synapsin-Cre (Syn-Cre) mice with floxed HMGB1 mice (HMGB1f/f). When these mice undergo sciatic nerve injury to activate neurogenic inflammation, they are protected from the development of cutaneous inflammation and allodynia as compared to wild-type controls. Syn-Cre/HMGB1fl/fl mice subjected to experimental collagen antibody-induced arthritis, a disease model in which nociceptor-dependent inflammation plays a significant pathological role, are protected from the development of allodynia and joint inflammation. Thus, nociceptor HMGB1 is required to mediate pain and inflammation during sciatic nerve injury and collagen antibody-induced arthritis.


HMGB1 Protein/metabolism , Neurons/physiology , Nociceptors/metabolism , Animals , Antibodies/immunology , Arthritis/chemically induced , Cells, Cultured , Collagen/immunology , Cytokines/genetics , Cytokines/metabolism , Female , Ganglia, Spinal/cytology , Gene Expression Regulation , HMGB1 Protein/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Optogenetics , Rats , Rats, Sprague-Dawley , Rats, Wistar , Sciatic Neuropathy/metabolism
13.
Article En | MEDLINE | ID: mdl-34200618

Fibromyalgia (FM) is a chronic pain condition associated with impaired muscle strength and exercise-induced pain. Physical exercise has been highlighted, by international clinical guidelines and stakeholders, as an essential component of rehabilitation in FM. Exposure to pain during exercise is generally correlated with elevated lactate levels and, additionally, is one known reason for persons with FM to avoid physical exercise and activity. A crossover design was used to test and evaluate an approach consisting of resistance exercise with heavy loads and a low number of repetitions among ten women with FM. The participants were consecutively recruited to test and perform exercise with two different resistance levels (A = light/moderate load, and B = heavy load) in a randomized crossover trial using an AB/BA setting. Results showed that the heavy load exercise session was experienced as more positive than the light/moderate load exercise session and that lower lactate levels followed exercise with heavier weight loads. This is promising and indicates that the approach of heavy weight loads and accustomed repetitions is accepted in FM and has the potential to attenuate hesitation to exercise due to exercise-induced pain. However, these effects need to be further investigated in more extensive studies.


Fibromyalgia , Resistance Training , Cross-Over Studies , Exercise , Exercise Therapy , Female , Humans , Pilot Projects
14.
Mol Med ; 27(1): 58, 2021 06 07.
Article En | MEDLINE | ID: mdl-34098868

BACKGROUND: High mobility group box 1 (HMGB1) is a nuclear protein with extracellular inflammatory cytokine activity. It is passively released during cell death and secreted by activated cells of many lineages. HMGB1 contains three conserved redox-sensitive cysteine residues: cysteines in position 23 and 45 (C23 and C45) can form an intramolecular disulfide bond, whereas C106 is unpaired and is essential for the interaction with Toll-Like Receptor (TLR) 4. However, a comprehensive characterization of the dynamic redox states of each cysteine residue and of their impacts on innate immune responses is lacking. METHODS: Primary human macrophages or murine macrophage-like RAW 264.7 cells were activated in cell cultures by redox-modified or point-mutated (C45A) recombinant HMGB1 preparations or by lipopolysaccharide (E. coli.0111: B4). Cellular phosphorylated NF-κB p65 subunit and subsequent TNF-α release were quantified by commercial enzyme-linked immunosorbent assays. RESULTS: Cell cultures with primary human macrophages and RAW 264.7 cells demonstrated that fully reduced HMGB1 with all three cysteines expressing thiol side chains failed to generate phosphorylated NF-КB p65 subunit or TNF-α. Mild oxidation forming a C23-C45 disulfide bond, while leaving C106 with a thiol group, was required for HMGB1 to induce phosphorylated NF-КB p65 subunit and TNF-α production. The importance of a C23-C45 disulfide bond was confirmed by mutation of C45 to C45A HMGB1, which abolished the ability for cytokine induction. Further oxidation of the disulfide isoform also inactivated HMGB1. CONCLUSIONS: These results reveal critical post-translational redox mechanisms that control the proinflammatory activity of HMGB1 and its inactivation during inflammation.


Cysteine/metabolism , Cytokines/metabolism , HMGB1 Protein/metabolism , Oxidation-Reduction , Animals , Biomarkers , Cells, Cultured , Disulfides/metabolism , HMGB1 Protein/genetics , Humans , Inflammation/etiology , Inflammation/metabolism , Macrophages/immunology , Macrophages/metabolism , Mice , Mutant Proteins , NF-kappa B/metabolism , Phosphorylation , Protein Processing, Post-Translational , RAW 264.7 Cells , Recombinant Proteins , Signal Transduction
15.
Sci Transl Med ; 13(593)2021 05 12.
Article En | MEDLINE | ID: mdl-33980578

Inhibitors of proprotein convertase subtilisin/kexin type 9 (PCSK9) reduce low-density lipoprotein (LDL) cholesterol and are used for treatment of dyslipidemia. Current PCSK9 inhibitors are administered via subcutaneous injection. We present a highly potent, chemically modified PCSK9 antisense oligonucleotide (ASO) with potential for oral delivery. Past attempts at oral delivery using earlier-generation ASO chemistries and transient permeation enhancers provided encouraging data, suggesting that improving potency of the ASO could make oral delivery a reality. The constrained ethyl chemistry and liver targeting enabled by N-acetylgalactosamine conjugation make this ASO highly potent. A single subcutaneous dose of 90 mg reduced PCSK9 by >90% in humans with elevated LDL cholesterol and a monthly subcutaneous dose of around 25 mg is predicted to reduce PCSK9 by 80% at steady state. To investigate the feasibility of oral administration, the ASO was coformulated in a tablet with sodium caprate as permeation enhancer. Repeated oral daily dosing in dogs resulted in a bioavailability of 7% in the liver (target organ), about fivefold greater than the plasma bioavailability. Target engagement after oral administration was confirmed by intrajejunal administration of a rat-specific surrogate ASO in solution with the enhancer to rats and by plasma PCSK9 and LDL cholesterol lowering in cynomolgus monkey after tablet administration. On the basis of an assumption of 5% liver bioavailability after oral administration in humans, a daily dose of 15 mg is predicted to reduce circulating PCSK9 by 80% at steady state, supporting the development of the compound for oral administration to treat dyslipidemia.


Oligonucleotides, Antisense , PCSK9 Inhibitors , Animals , Dogs , Macaca fascicularis , Rats , Serine Endopeptidases
16.
Acta Paediatr ; 110(10): 2717-2722, 2021 Oct.
Article En | MEDLINE | ID: mdl-33934408

Macrophage activation syndrome (MAS) is a subtype of hemophagocytic lymphohistiocytosis (HLH) diseases. The underlying mechanism of these life-threatening disorders is impaired granule-mediated cytotoxicity exerted by natural killer (NK) cells and T lymphocytes. This function is meant for elimination of virus-infected cells, malignant cells and to prevent exaggerated immune responses. The normal outcome after an attack by NK or cytotoxic T cells is apoptosis of the target cell. This prevents cytotoxic inflammatory responses in adjacent tissues which occur after lytic cell death. Extensive cell lysis can even produce a cytokine storm, as evidenced in MAS. Programmed proinflammatory lytic cell death, pyroptosis, caused by activated inflammasomes is central in the pathogenesis of MAS. Pyroptosis mediates IL-18 cytokine release, which robustly stimulates NK and T cells to produce IFN-γ, the key macrophage-activating signal which initiates a burst of inflammatory cytokines and chemokines. Lytic cell death also mediates a discharge of the prototype alarmin high mobility group box protein 1 (HMGB1), a proinflammatory molecule present in all cells and that mediates the pathogenesis of MAS as outlined here. Therapeutic options to control causal factors operating in the pathogenesis of MAS are also discussed.


Lymphohistiocytosis, Hemophagocytic , Macrophage Activation Syndrome , Cytokines , Humans , Killer Cells, Natural , Lymphohistiocytosis, Hemophagocytic/etiology , Lymphohistiocytosis, Hemophagocytic/therapy , Macrophage Activation Syndrome/etiology , Macrophage Activation Syndrome/therapy
17.
Mol Med ; 27(1): 48, 2021 05 11.
Article En | MEDLINE | ID: mdl-33975537

BACKGROUND: Macrophage activation syndrome (MAS) is a potentially fatal complication of systemic inflammation. HMGB1 is a nuclear protein released extracellularly during proinflammatory lytic cell death or secreted by activated macrophages, NK cells, and additional cell types during infection or sterile injury. Extracellular HMGB1 orchestrates central events in inflammation as a prototype alarmin. TLR4 and the receptor for advanced glycation end products operate as key HMGB1 receptors to mediate inflammation. METHODS: Standard ELISA and cytometric bead array-based methods were used to examine the kinetic pattern for systemic release of HMGB1, ferritin, IL-18, IFN-γ, and MCP-1 before and during treatment of four children with critical MAS. Three of the patients with severe underlying systemic rheumatic diseases were treated with biologics including tocilizumab or anakinra when MAS developed. All patients required intensive care therapy due to life-threatening illness. Add-on etoposide therapy was administered due to insufficient clinical response with standard treatment. Etoposide promotes apoptotic rather than proinflammatory lytic cell death, conceivably ameliorating subsequent systemic inflammation. RESULTS: This therapeutic intervention brought disease control coinciding with a decline of the increased systemic HMGB1, IFN-γ, IL-18, and ferritin levels whereas MCP-1 levels evolved independently. CONCLUSION: Systemic HMGB1 levels in MAS have not been reported before. Our results suggest that the molecule is not merely a biomarker of inflammation, but most likely also contributes to the pathogenesis of MAS. These observations encourage further studies of HMGB1 antagonists. They also advocate therapeutic etoposide administration in severe MAS and provide a possible biological explanation for its mode of action.


Biomarkers , Etoposide/administration & dosage , HMGB1 Protein/blood , Macrophage Activation Syndrome/blood , Macrophage Activation Syndrome/drug therapy , Adolescent , Antineoplastic Agents, Phytogenic/administration & dosage , Child , Child, Preschool , Cytokines/blood , Female , Humans , Immunosuppressive Agents/administration & dosage , Inflammation Mediators/blood , Macrophage Activation Syndrome/etiology , Male , Treatment Outcome
18.
Immunity ; 54(3): 454-467.e6, 2021 03 09.
Article En | MEDLINE | ID: mdl-33561388

Heparin, a mammalian polysaccharide, is a widely used anticoagulant medicine to treat thrombotic disorders. It is also known to improve outcomes in sepsis, a leading cause of mortality resulted from infection-induced immune dysfunction. Whereas it is relatively clear how heparin exerts its anticoagulant effect, the immunomodulatory mechanisms enabled by heparin remain enigmatic. Here, we show that heparin prevented caspase-11-dependent immune responses and lethality in sepsis independent of its anticoagulant properties. Heparin or a chemically modified form of heparin without anticoagulant function inhibited the alarmin HMGB1-lipopolysaccharide (LPS) interaction and prevented the macrophage glycocalyx degradation by heparanase. These events blocked the cytosolic delivery of LPS in macrophages and the activation of caspase-11, a cytosolic LPS receptor that mediates lethality in sepsis. Survival was higher in septic patients treated with heparin than those without heparin treatment. The identification of this previously unrecognized heparin function establishes a link between innate immune responses and coagulation.


Anticoagulants/therapeutic use , Caspases/metabolism , Heparin/therapeutic use , Macrophages/immunology , Sepsis/drug therapy , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Caspases/genetics , Cell Line , Female , Glucuronidase/genetics , Glucuronidase/metabolism , Glycocalyx/metabolism , HMGB1 Protein/metabolism , Humans , Immunomodulation , Lipopolysaccharides/metabolism , Male , Mice , Mice, Knockout , Middle Aged , Sepsis/mortality , Survival Analysis , Young Adult
19.
J Rheumatol ; 48(10): 1596-1602, 2021 10.
Article En | MEDLINE | ID: mdl-33589555

OBJECTIVE: Macrophage activation syndrome (MAS) constitutes 1 subtype of the hyperinflammatory syndrome hemophagocytic lymphohistiocytosis (HLH), and the term MAS-HLH was recently proposed for HLH with underlying autoimmune/autoinflammatory conditions. The mortality of MAS-HLH has been estimated at 5-10%. Here we report our experiences with moderately dosed etoposide in severe MAS-HLH; the objective was to effectively reduce severe hyperinflammatory activity with limited side effects. METHODS: In addition to conventional antiinflammatory treatment, moderately dosed etoposide was administered to 7 children affected by rapidly progressing MAS-HLH with central nervous system (n = 5) and/or pulmonary (n = 5) involvement. Three had underlying systemic juvenile idiopathic arthritis (sJIA), 2 had atypical sJIA (no arthritis at diagnosis), and 2 had systemic lupus erythematosus. We performed lymphocyte cytotoxicity analyses in all 7 and genetic analyses in 6. RESULTS: All children promptly responded to moderately dosed etoposide (50-100 mg/m2 once weekly), added to conventional MAS-HLH treatment that was considered insufficient. The mean accumulated etoposide dose was 671 mg/m2 (range 300-1050 mg/m2) as compared to 1500 mg/m2 recommended in the first 8 weeks of the HLH-94/HLH-2004 protocols. One child developed neutropenic fever and another neutropenic sepsis (neutrophils 0.3 × 109/L at therapy onset). Five of 7 children had low percentages (< 5%) of circulating natural killer (NK) cells prior to or in association with diagnosis; NK cell activity was pathologically low in 2 of 5 children studied. Disease-causing variants in HLH-associated genes were not found. All children were alive at latest follow-up (2-9 yrs after onset); neurological symptoms had normalized in 4 of 5 affected children. CONCLUSION: Moderately dosed etoposide may be beneficial in severe and/or refractory MAS-HLH.


Arthritis, Juvenile , Lymphohistiocytosis, Hemophagocytic , Macrophage Activation Syndrome , Sepsis , Arthritis, Juvenile/complications , Arthritis, Juvenile/drug therapy , Etoposide/therapeutic use , Humans , Lymphohistiocytosis, Hemophagocytic/drug therapy , Macrophage Activation Syndrome/drug therapy
...