Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Intervalo de año de publicación
1.
Braz. J. Pharm. Sci. (Online) ; 58: e21310, 2022. graf
Artículo en Inglés | LILACS | ID: biblio-1420508

RESUMEN

Abstract In the hospital environment, postoperative pain is a common occurrence that impairs patient recovery and rehabilitation and lengthens hospitalization time. Racemic bupivacaine hydrochloride (CBV) and Novabupi® (NBV) (S (-) 75% R (+) 25% bupivacaine hydrochloride) are two examples of local anesthetics used in pain management, the latter being an alternative with less deleterious effects. In the present study, biodegradable implants were developed using Poly(L-lactide-co-glycolide) through a hot molding technique, evaluating their physicochemical properties and their in vitro drug release. Different proportions of drugs and polymer were tested, and the proportion of 25%:75% was the most stable for molding the implants. Thermal and spectrometric analyses were performed, and they revealed no unwanted chemical interactions between drugs and polymer. They also confirmed that heating and freeze-drying used for manufacturing did not interfere with stability. The in vitro release results revealed drugs sustained release, reaching 64% for NBV-PLGA and 52% for CBV-PLGA up to 30 days. The drug release mechanism was confirmed by microscopy, which involved pores formation and polymeric erosion, visualized in the first 72 h of the in vitro release test. These findings suggest that the developed implants are interesting alternatives to control postoperative pain efficiently.


Asunto(s)
Dolor Postoperatorio/clasificación , Bupivacaína/análisis , Implantes Absorbibles/clasificación , Anestésicos Locales/administración & dosificación , Técnicas In Vitro/métodos , Preparaciones Farmacéuticas/análisis , Hospitales/clasificación
2.
Pharmaceutics ; 13(6)2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34200993

RESUMEN

Since the possibility of silencing specific genes linked to retinal degeneration has become a reality with the use of small interfering RNAs (siRNAs), this technology has been widely studied to promote the treatment of several ocular diseases. Despite recent advances, the clinical success of gene silencing in the retina is significantly reduced by inherent anatomical and physiological ocular barriers, and new strategies are required to achieve intraocular therapeutic effectiveness. In this study, we developed lipoplexes, prepared with sodium alginate as an adjuvant and strategically coated with hyaluronic acid (HA-LIP), and investigated the potential neuroprotective effect of these systems in a retinal light damage model. Successful functionalization of the lipoplexes with hyaluronic acid was indicated in the dynamic light scattering and transmission electron microscopy results. Moreover, these HA-LIP nanoparticles were able to protect and deliver siRNA molecules targeting caspase-3 into the retina. After retinal degeneration induced by high light exposure, in vitro and in vivo quantitative reverse transcription-PCR (RT-qPCR) assays demonstrated significant inhibition of caspase-3 expression by HA-LIP. Furthermore, these systems were shown to be safe, as no evidence of retinal toxicity was observed by electroretinography, clinical evaluation or histology.

3.
J Biomater Appl ; 35(8): 1019-1033, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33290123

RESUMEN

Tacrolimus (TAC), a potent immunosuppressive macrolide, has been investigated for ocular diseases due to promising results in the treatment of anterior and posterior segments eye diseases. Mesoporous and functionalized silica nanoparticles show potential as TAC delivery platforms owing to their interesting characteristic as large surface area, uniform pore size distribution, high pore volume, and excellent biocompatibility. The purpose of this study was to incorporate TAC in functionalized silica nanoparticles with 3-aminopropyltriethoxysilane (MSNAPTES) and investigate the safety and biocompatibility of the systems. The MSNAPTES and MSNAPTES TAC nanoparticles were characterized. The in vitro cytotoxicity of MSNAPTES and MSNAPTES load with TAC (MSNAPTES-TAC) in retinal pigment epithelial cells (ARPE-19) was determined, chorioallantoic membrane (CAM) assay model was used to investigate the in vivo biocompatibility, and safety of intravitreal injection was evaluated using clinical examination (assessment of intraocular pressure and indirect fundus ophthalmoscopy), electroretinographic (ERG) and histologic studies in rats' eyes. The elemental analysis (CHN), thermogravimetric (TGA), photon correlation spectroscopy and Fourier transform infrared (FTIR) analysis confirmed the presence of functionalized agent and TAC in the MSNAPTES nanoparticles. TAC loading was estimated at 7% for the MSNAPTES TAC nanoparticles. MSNAPTES and MSNAPTES TAC did not present in vitro cytotoxicity. The drug delivery systems showed good biocompatibility on CAM. No retinal abnormalities, vitreous hemorrhage, neovascularization, retinal detachment, and optic nerve atrophy were observed during the in vivo study. Follow-up ERGs showed no changes in the function of the retina cells after 15 days of intravitreal injection, and histopathologic observations support these findings. In conclusion, MSNAPTES TAC was successfully synthesized, and physicochemical analyses confirmed the presence of TAC in the nanoparticles. In vitro and in vivo studies indicated that MSNAPTES TAC was safe to intravitreal administration. Taking into account the enormous potential of MSNAPTES to carry TAC, this platform could be a promising strategy for TAC ocular drug delivery in the treatment of eye diseases.


Asunto(s)
Nanopartículas/química , Dióxido de Silicio/química , Tacrolimus/administración & dosificación , Administración Intravesical , Animales , Materiales Biocompatibles/administración & dosificación , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Humanos , Nanopartículas/administración & dosificación , Tamaño de la Partícula , Porosidad , Propilaminas/administración & dosificación , Propilaminas/química , Propilaminas/farmacología , Ratas , Silanos/administración & dosificación , Silanos/química , Silanos/farmacología , Dióxido de Silicio/administración & dosificación , Dióxido de Silicio/farmacología , Tacrolimus/química , Tacrolimus/farmacología
4.
Int J Stem Cells ; 14(1): 74-84, 2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33377455

RESUMEN

BACKGROUND AND OBJECTIVES: Eye diseases have a high socioeconomic impact on society and may be one of the fields in which most stem cell-related scientific accomplishments have been achieved recently. In this context, human Pluripotent Stem Cell (hPSC) technology arises as an important tool to produce and study human Embryonic Stem cell derived-Retinal Pigmented Epithelial Cells (hES-RPE) for several applications, such as cell therapy, disease modeling, and drug screening. The use of this technology in pre-clinical phases attends to the overall population desire for animal-free product development. Here, we aimed to compare hES-RPE cells with ARPE-19, one of the most commonly used retinal pigmented epithelial immortalized cell lines. METHODS AND RESULTS: Functional, cellular and molecular data obtained suggest that hES-RPE cells more closely resembles native RPEs compared to ARPE-19. Furthermore, hES-RPE revealed an interesting robustness when cultured on human Bruch's membrane explants and after exposure to Cyclosporine (CSA), Sirolimus (SRL), Tacrolimus (TAC), Leflunomide (LEF) and Teriflunomide (TER). On these conditions, hES-RPE cells were able to survive at higher drug concentrations, while ARPE-19 cell line was more susceptible to cell death. CONCLUSIONS: Therefore, hES-RPEs seem to have the ability to incur a broader range of RPE functions than ARPE-19 and should be more thoroughly explored for drug screening.

5.
Appl Radiat Isot ; 157: 109032, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32063327

RESUMEN

Boron nitride nanotubes (BNNTs) have been growing in notoriety in the development of systems aiming bioapplications. In this work we conducted an investigation about the mechanisms involved in the incorporation of samarium and gadolinium in BNNTs. The process was performed by the reduction of samarium and gadolinium oxides (Sm2O3 and Gd2O3, respectively) in the presence of NH3 gas (witch decomposes into N2 and H2) at high temperatures. Various characterization techniques were conducted to elucidate how Sm and Gd are introduced into the BNNT structure. Biological in vitro assays were performed with human fibroblasts and a human osteosarcoma cell line (SAOS-2). Our results show that the studied systems have high potential for biomedical application and can be used as non-invasive imaging agents, such as scintigraphy radiotracers or as magnetic resonance imaging (MRI) contrast medium, being able to promote the treatment of many types of tumors simultaneously to their diagnosis.


Asunto(s)
Compuestos de Boro/química , Gadolinio/química , Nanomedicina , Nanotubos/química , Óxidos/química , Samario/química , Línea Celular , Humanos
6.
Braz. J. Pharm. Sci. (Online) ; 56: e18484, 2020. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1132064

RESUMEN

Angiogenesis is the formation of new blood vessels from preexisting vasculature. Uncontrolled angiogenesis is associated with progression of several ocular pathologies, such as diabetic retinopathy and macular degeneration. Thus, the inhibition of this process consists in an interesting therapeutic target. Corosolic acid (CA) is a natural derivative of ursolic acid, found in many medicinal herbs and exhibits numerous biological properties, including the antiangiogenic activity. The present study reports the production of CA-loaded poly d,l-lactidecoglycolide acid (PLGA) devices by melt technique. HPLC-UV method was developed and validated to evaluate the uniformity and the release profile of the developed systems. The devices were also characterized by Fourier transform infrared spectroscopy, thermal analysis, and scanning electron morphology. It was studied the antiangiogenic activity of the CA-polymer system, using an in vivo model, the chorioallantoic membrane assay (CAM). CA was dispersed uniformly in the polymer matrix and no chemical interaction between the components of the formulation was verified. The implants presented a sustained release of the drug, which was confirmed by the morphological study and demonstrated an antiangiogenic activity. Therefore, the developed delivery system is a promising therapeutic tool for the treatment of ocular diseases associated with neovascularization or others related to the angiogenic process.


Asunto(s)
Membrana Corioalantoides/anomalías , Degeneración Macular/patología , Neovascularización Patológica/patología , Polímeros , Rayos Ultravioleta/clasificación , Preparaciones Farmacéuticas/análisis , Cromatografía Líquida de Alta Presión/métodos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Retinopatía Diabética
7.
J Colloid Interface Sci ; 540: 342-353, 2019 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-30660791

RESUMEN

Vectorized small interfering RNAs (siRNAs) are widely used to induce specific mRNA degradation in the intracellular compartment of eukaryotic cells. Recently, we developed efficient cationic lipid-based siRNA vectors (siRNA lipoplexes or siLex) containing sodium alginate (Nalg-siLex) with superior efficiency and stability properties than siLex. In this study, we assessed the physicochemical and some biological properties of Nalg-siLex compared to siLex. While no significant differences in size, ζ potential and siRNA compaction were detected, the addition of sodium alginate modified the particle morphology, producing smoother and heterogeneous particles characterized by transmission electron microscopy. We also noted that Nalg-siLex have surface differences observed by X-ray photoelectron spectroscopy. These differences could arise from an internal reorganization of components induced by the addition of sodium alginate, that is indicated by Small-Angle X-ray Scattering results. Moreover, Nalg-siLex did not trigger significant hepatotoxicity nor inflammatory cytokine secretion compared to siLex. Taken together these results suggest that sodium alginate played a key role by structuring and reinforcing siRNA lipoplexes, leading to more stable and efficient delivery vector.


Asunto(s)
Alginatos/química , Técnicas de Transferencia de Gen , Liposomas/química , Interferencia de ARN , ARN Interferente Pequeño/administración & dosificación , Animales , Cationes/química , Línea Celular , Femenino , Lípidos/química , Ratones Endogámicos C57BL , Tamaño de la Partícula , ARN Interferente Pequeño/química , ARN Interferente Pequeño/genética , Electricidad Estática
8.
J Mater Sci Mater Med ; 29(8): 130, 2018 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-30074096

RESUMEN

The development of a myriad of nanoparticles types has opened new possibilities for the diagnostics and treatment of many diseases, especially for cancer. However, most of the researches done so far do not focus on the protection of normal cells surrounding a tumor from irradiation bystander effects that might lead to cancer recurrence. Gap-junctions are known to be involved in this process, which leads to genomic instability of neighboring normal cells, and flufenamic acid (FFA) is included in a new group of gap-junction blockers recently discovered. The present work explores the use of mesoporous silica nanoparticles MCM-41 functionalized with 3-Aminopropyltriethoxysilane (APTES) for anchoring the flufenamic acid for its prolonged and controlled release and protection from radiation bystander effects. MCM-41 and functionalized samples were structurally and chemically characterized with multiple techniques. The biocompatibility of all samples was tested in a live/dead assay performed in cultured MRC-5 and HeLa cells. HeLa cells cultured were exposed to 50 Gy of gamma-rays and the media transferred to fibroblast cells cultured separately. Our results show that MCM-41 and functionalized samples have high biocompatibility with MCR-5 and HeLa cells, and most importantly, the FFA delivered by these NPs was able to halt apoptosis, one of main bystander effects.


Asunto(s)
Efecto Espectador/efectos de la radiación , Ácido Flufenámico/química , Ácido Flufenámico/farmacología , Nanopartículas/química , Dióxido de Silicio/química , Dióxido de Silicio/farmacología , Efecto Espectador/efectos de los fármacos , Línea Celular , Fibroblastos/efectos de los fármacos , Fibroblastos/efectos de la radiación , Rayos gamma/efectos adversos , Humanos , Ensayo de Materiales , Microscopía Electrónica de Rastreo
9.
Bioengineering (Basel) ; 5(1)2018 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-29315235

RESUMEN

Recently, flufenamic acid (FFA) was discovered among fenamates as a free radical scavenger and gap junction blocker; however, its effects have only been studied in cancer cells. Normal cells in the surroundings of a tumor also respond to radiation, although they are not hit by it directly. This phenomenon is known as the bystander effect, where response molecules pass from tumor cells to normal ones, through communication channels called gap junctions. The use of the enhanced permeability and retention effect, through which drug-loaded nanoparticles smaller than 200 nm may accumulate around a tumor, can prevent the local side effect upon controlled release of the drug. The present work, aimed at functionalizing MCM-41 (Mobil Composition of Matter No. 41) silica nanoparticles with FFA and determining its biocompatibility with human fibroblasts MRC-5 (Medical Research Council cell strain 5). MCM-41, was synthesized and characterized structurally and chemically, with multiple techniques. The biocompatibility assay was performed by Live/Dead technique, with calcein and propidium-iodide. MRC-5 cells were treated with FFA-grafted MCM-41 for 48 h, and 98% of cells remained viable, without signs of necrosis or morphological changes. The results show the feasibility of MCM-41 functionalization with FFA, and its potential protection of normal cells, in comparison to the role of FFA in cancerous ones.

10.
Mater Sci Eng C Mater Biol Appl ; 56: 181-8, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26249579

RESUMEN

Along with anti-cancer drug delivery researches, many efforts have been done to develop new tracers for diagnostic applications. Based on advances in molecular imaging, nanoparticles can be used to visualize, characterize and measure biological process at molecular and cellular level. Therefore, the purpose of this study was to synthesize, characterize and radiolabeled mesoporous silica nanoparticles (MSNs) for in vivo applications. The nanoparticles were synthesized, functionalized with 3-aminopropyltriethoxysilane (APTES) and then, anchored with diethylenetriaminepentaacetic acid (DTPA). Particles were physicochemical characterized by elemental analysis (CHN), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and zeta potential, and were morphologically characterized by scanning electron microscopy (SEM), low-angle X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. Results indicate that functionalization process was successfully achieved. Next, functionalized silica nanoparticles were radiolabeled with technetium-99m showing high radiochemical yields and high radiolabeled stability. These findings allow the use of the particles for in vivo applications. Biodistribution and scintigraphic images were carried out in healthy mice in order to determine the fate of the particles. Results from in vivo experiments showed high uptake by liver, as expected due to phagocytosis. However, particles also showed a significant uptake in the lungs, indicated by high lung-to-non-target tissue ratio. In summary, taking into account the great potential of these silica mesoporous structures to carry molecules this platform could be a good strategy for theranostic purposes.


Asunto(s)
Ensayo de Materiales , Imagen Molecular/métodos , Nanopartículas/química , Dióxido de Silicio , Tecnecio , Animales , Marcaje Isotópico , Ratones , Dióxido de Silicio/química , Dióxido de Silicio/farmacocinética , Dióxido de Silicio/farmacología , Tecnecio/química , Tecnecio/farmacocinética , Tecnecio/farmacología
11.
J Mater Sci Mater Med ; 25(11): 2527-40, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25056197

RESUMEN

The present work developed a biomaterial (HA/SBA-16) based on the growth of calcium phosphate (HA) particles within an organized silica structure (SBA-16) to evaluate its application as a drug delivery system. The samples were charged with ciprofloxacin as a model drug and in vitro release assays were carried out. The samples were characterized by elemental analysis (CHN), Fourier transform infrared spectroscopy, nitrogen adsorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), small angle X-ray scattering (SAXS) and X-ray diffraction. The results obtained by TEM, SEM and SAXS reveal a well-defined cubic arrangement of a uniform spherical mesoporous structure, an intrinsic characteristic of these materials, which indicated that SBA-16 and HA/SBA-16 could potentially encapsulate bioactive molecules by means of ordered mesopores. It was found that both surface interaction and pore volume affect the rate and amount of ciprofloxacin released from the mesoporous materials. In vitro assays were performed to evaluate the adhesion, viability, and growth behavior of human adipose tissue-derived stem cells (hADSC) on SBA-16 and HA/SBA-16 nanocomposites to verify their potential as a scaffold for application in bone-tissue engineering using MTT assay and alkaline phosphatase activity tests. The results showed that the materials are promising systems for bone repair, providing a good environment for the adhesion and proliferation of rat mesenchymal stem cells and hADSC in vitro.


Asunto(s)
Ciprofloxacina/administración & dosificación , Ciprofloxacina/química , Preparaciones de Acción Retardada/química , Durapatita/química , Células Madre Mesenquimatosas/efectos de los fármacos , Dióxido de Silicio/química , Absorción Fisicoquímica , Antibacterianos/administración & dosificación , Antibacterianos/química , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Preparaciones de Acción Retardada/administración & dosificación , Difusión , Estabilidad de Medicamentos , Humanos , Células Madre Mesenquimatosas/fisiología , Porosidad
12.
Mater Sci Eng C Mater Biol Appl ; 40: 275-80, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24857494

RESUMEN

In the present work, magnetic nanoparticles embedded into mesoporous silica were prepared in two steps: first, magnetite was synthesized by oxidation-precipitation method, and next, the magnetic nanoparticles were coated with mesoporous silica by using nonionic block copolymer surfactants as structure-directing agents. The mesoporous SiO2-coated Fe3O4 samples were functionalized using octadecyltrimethoxysilane as silanizing agent. The pure and functionalized silica nanoparticles were physicochemically and morphologically characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), N2 adsorption, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The resultant magnetic silica nanoparticles were applied as sorbents for magnetic solid-phase extraction (MSPE) of oral antidiabetic drugs in human plasma. Our results revealed that the magnetite nanoparticles were completely coated by well-ordered mesoporous silica with free pores and stable pore walls, and that the structural and magnetic properties of the Fe3O4 nanoparticles were preserved in the applied synthesis route. Indeed, the sorbent material was capable of extracting the antidiabetic drugs from human plasma, being useful for the sample preparation in biological matrices.


Asunto(s)
Cromatografía Líquida de Alta Presión , Hipoglucemiantes/sangre , Nanopartículas de Magnetita/química , Dióxido de Silicio/química , Administración Oral , Óxido Ferrosoférrico/química , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/aislamiento & purificación , Porosidad , Silanos/química , Extracción en Fase Sólida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA