Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Comp Med ; 73(1): 45-57, 2023 02 01.
Article En | MEDLINE | ID: mdl-36744555

The study of nonhuman primates (NHP) can provide significant insights into our understanding numerous infectious agents. The etiological agent of COVID-19, SARS-CoV-2 virus, first emerged in 2019 and has so far been responsible for the deaths of over 4 million people globally. In the frenzied search to understand its pathogenesis and immunology and to find measures for prevention and control of this pandemic disease, NHP, particularly macaques, are the preferred model because they manifest similar clinical signs and immunologic features as humans. However, possible latent, subclinical, and opportunistic infections not previously detected in animals participating in a study may obscure experimental results and confound data interpretations in testing treatments and vaccine studies for COVID-19. Certain pathophysiologic changes that occur with SARS-CoV-2 virus infection are similar to those of simian pathogens. The current review discusses numerous coinfections of COVID-19 with other diseases and describes possible outcomes and mechanisms in COVID-19 studies of NHP that have coinfections. Due to the urgency triggered by the pandemic, screening that is more rigorous than usual is necessary to limit background noise and maximize the reliability of data from NHP COVID-19 studies. Screening for influenza virus, selected respiratory bacteria, and regional endemic pathogens such as vector-borne agents, together with the animal's individual exposure history, should be the main considerations in selecting a NHP for a COVID-19 study. In addition, because NHP are susceptible to the SARS-CoV-2 virus, management and surveillance measures should be established to prevent transmission to healthy animals from infected colony animals and husbandry staff. This review presents compiled data on the use of NHP in COVID-19 studies, emphasizing the need to create the most reliable NHP model for those studies by extensive screening for other pathogens.


COVID-19 , Coinfection , Humans , Animals , SARS-CoV-2 , Reproducibility of Results , Primates
2.
Antiviral Res ; 182: 104859, 2020 10.
Article En | MEDLINE | ID: mdl-32649965

The outbreaks of Zika virus (ZIKV) infection in Brazil, 2015-2016, were associated with severe congenital malformations. Our translational study aimed to test the efficacy of the antiviral agent sofosbuvir (SOF) against vertical transmission of ZIKV and the associated congenital syndrome (CZS), using a rhesus monkey model. Eight pregnant macaques were successfully infected during the organogenesis phase with a Brazilian ZIKV strain; five of them received SOF from two to fifteen days post-infection. Both groups of dams showed ZIKV-associated clinical signals, detectable ZIKV RNA in several specimens, specific anti-ZIKV IgM and IgG antibodies, and maternal neutralizing antibodies. However, malformations occurred only among non-treated dam offspring. Compared to non-treated animals, all SOF-treated dams had a shorter ZIKV viremia and four of five neonates had undetectable ZIKV RNA in blood and tissue samples. These results support further clinical evaluations aiming for the prevention of CZS.


Antiviral Agents/therapeutic use , Infectious Disease Transmission, Vertical/prevention & control , Sofosbuvir/therapeutic use , Zika Virus Infection/prevention & control , Zika Virus Infection/transmission , Zika Virus/drug effects , Animals , Antibodies, Viral/blood , Antiviral Agents/administration & dosage , Brazil , Female , Macaca mulatta , Pregnancy , Pregnancy Complications, Infectious/prevention & control , Pregnancy Complications, Infectious/virology , Sofosbuvir/administration & dosage , Translational Research, Biomedical , Viremia/drug therapy , Viremia/prevention & control , Zika Virus/immunology , Zika Virus Infection/congenital , Zika Virus Infection/drug therapy
3.
Acta Diabetol ; 56(2): 227-236, 2019 Feb.
Article En | MEDLINE | ID: mdl-30673859

AIMS: Ectopic fat is a recognized contributor to insulin resistance and metabolic dysfunction, while the role of fat deposition inside intestinal wall tissue remains understudied. We undertook this study to directly quantify and localize intramural fat deposition in duodenal tissue and determine its association with adiposity. METHODS: Duodenal tissues were collected from aged (21.2 ± 1.3 years, 19.5 ± 3.1 kg, n = 39) female baboons (Papio sp.). Fasted blood was collected for metabolic profiling and abdominal circumference (AC) measurements were taken. Primary tissue samples were collected at the major duodenal papilla at necropsy: one full cross section was processed for hematoxylin and eosin staining and evaluated; a second full cross section was processed for direct chemical lipid analysis on which percentage duodenal fat content was calculated. RESULTS: Duodenal fat content obtained by direct tissue quantification showed considerable variability (11.95 ± 6.93%) and was correlated with AC (r = 0.60, p < 0.001), weight (r = 0.38, p = 0.02), leptin (r = 0.63, p < 0.001), adiponectin (r = - 0.32, p < 0.05), and triglyceride (r = 0.41, p = 0.01). The relationship between duodenal fat content and leptin remained after adjusting for body weight and abdominal circumference. Intramural adipocytes were found in duodenal sections from all animals and were localized to the submucosa. Consistent with the variation in tissue fat content, the submucosal adipocytes were non-uniformly distributed in clusters of varying size. Duodenal adipocytes were larger in obese vs. lean animals (106.9 vs. 66.7 µm2, p = 0.02). CONCLUSIONS: Fat accumulation inside the duodenal wall is strongly associated with adiposity and adiposity related circulating biomarkers in baboons. Duodenal tissue fat represents a novel and potentially metabolically active site of ectopic fat deposition.


Adiposity , Duodenum/pathology , Intra-Abdominal Fat/pathology , Obesity/pathology , Adiponectin/blood , Animals , Female , Intra-Abdominal Fat/metabolism , Leptin/blood , Papio , Triglycerides/blood
4.
Article En | MEDLINE | ID: mdl-28983468

A major constraint in the study of Plasmodium falciparum malaria, including vaccine development, lies on the parasite's strict human host specificity and therefore the shortage of animal experimental models able to harbor human plasmodia. The best experimental models are neo-tropical primates of the genus Saimiri and Aotus, but they require splenectomy to reduce innate defenses for achieving high and consistent parasitemias, an important limitation. Clodronate-liposomes (CL) have been successfully used to deplete monocytes/macrophages in several experimental models. We investigated whether a reduction in the numbers of phagocytic cells by CL would improve the development of P. falciparum parasitemia in non-splenectomized Saimiri sciureus monkeys. Depletion of S. sciureus splenocytes after in vitro incubation with CL was quantified using anti-CD14 antibodies and flow cytometry. Non-infected and P. falciparum-infected S. sciureus were injected intravenously twice a week with either CL at either 0.5 or 1 mL (5 mg/mL) or phosphate buffered saline (PBS). Animals were monitored during infection and treated with mefloquine. After treatment and euthanasia, spleen and liver were collected for histological analysis. In vitro CL depleted S. sciureus splenic monocyte/macrophage population in a dose- and time-dependent manner. In vivo, half of P. falciparum-infected S. sciureus treated with CL 0.5 mL, and two-thirds of those treated with CL 1 mL developed high parasitemias requiring mefloquine treatment, whereas all control animals were able to self-control parasitemia without the need for antimalarial treatment. CL-treated infected S. sciureus showed a marked decrease in the degree of splenomegaly despite higher parasitemias, compared to PBS-treated animals. Histological evidence of partial monocyte/macrophage depletion, decreased hemozoin phagocytosis and decreased iron recycling was observed in both the spleen and liver of CL-treated infected S. sciureus. CL is capable of promoting higher parasitemia in P. falciparum-infected S. sciureus, associated with evidence of partial macrophage depletion in the spleen and liver. Macrophage depletion by CL is therefore a practical and viable alternative to surgical splenectomy in this experimental model.


Clodronic Acid/pharmacology , Macrophages/drug effects , Malaria, Falciparum/parasitology , Monocytes/drug effects , Parasitemia/chemically induced , Plasmodium falciparum/growth & development , Animals , Clodronic Acid/administration & dosage , Disease Models, Animal , Female , Haplorhini , Humans , Liposomes , Liver/cytology , Male , Phagocytosis/drug effects , Saimiri , Spleen/cytology , Time Factors
5.
Front Neurosci ; 11: 49, 2017.
Article En | MEDLINE | ID: mdl-28261040

Changes in cerebral blood flow (CBF) during a hyperglycemic challenge were mapped, using perfusion-weighted MRI, in a group of non-human primates. Seven female baboons were fasted for 16 h prior to 1-h imaging experiment, performed under general anesthesia, that consisted of a 20-min baseline, followed by a bolus infusion of glucose (500 mg/kg). CBF maps were collected every 7 s and blood glucose and insulin levels were sampled at regular intervals. Blood glucose levels rose from 51.3 ± 10.9 to 203.9 ± 38.9 mg/dL and declined to 133.4 ± 22.0 mg/dL, at the end of the experiment. Regional CBF changes consisted of four clusters: cerebral cortex, thalamus, hypothalamus, and mesencephalon. Increases in the hypothalamic blood flow occurred concurrently with the regulatory response to systemic glucose change, whereas CBF declined for other clusters. The return to baseline of hypothalamic blood flow was observed while CBF was still increasing in other brain regions. The spatial pattern of extra-hypothalamic CBF changes was correlated with the patterns of several cerebral networks including the default mode network. These findings suggest that hypothalamic blood flow response to systemic glucose levels can potentially be explained by regulatory activity. The response of extra-hypothalamic clusters followed a different time course and its spatial pattern resembled that of the default-mode network.

6.
Malar J ; 14: 128, 2015 Mar 25.
Article En | MEDLINE | ID: mdl-25890318

BACKGROUND: The understanding of the mechanisms of immunity in malaria is crucial for the rational development of interventions such as vaccines. During blood stage infection, the spleen is considered to play critical roles in both immunity and immunopathology of Plasmodium falciparum infections. METHODS: Saimiri sciureus monkeys were inoculated with blood stages of P. falciparum (FUP strain) and spleens removed during acute disease (days 7 and 13 of infection) and during convalescence (15 days after start of chloroquine treatment). Cytokine (IFNγ, TNFα, IL2, IL6, IL10, and IL12) responses of splenocytes stimulated with P. falciparum-parasitized red blood cells were assessed by real-time PCR using specific Saimiri primers, and histological changes were evaluated using haematoxylin-eosin and Giemsa-stained slides. RESULTS: Early during infection (day 7, 1-2% parasitaemia), spleens showed disruption of germinal centre architecture with heavy B-cell activation (centroblasts), and splenocytes showed increased expression of IFNγ, IL6 and IL12 upon in vitro stimuli by P. falciparum-parasitized red blood cells (pRBC). Conversely, 15 days after treatment of blood stage infection with chloroquine, splenocytes showed spontaneous in vitro expression of TNFα, IL2, IL6, IL10, and IL12, but not IFNγ, and stimulation with P. falciparum pRBC blocked the expression of all these cytokines. During the acute phase of infection, splenic disarray with disorganized germinal centres was observed. During convalescence, spleens of the chloroquine-treated animals showed white pulp hyperplasia with extensive lymphocyte activation and persistency of heavily haemozoin-laden macrophages throughout the red pulp. CONCLUSIONS: Inability to eliminate haemozoin is likely involved in the persistent lymphocyte activation and in the anergic responses of Saimiri splenocytes to P. falciparum pRBC, with important negative impact in immune responses and implications for the design of malaria vaccine.


Cytokines/genetics , Erythrocytes/parasitology , Malaria, Falciparum/pathology , Plasmodium falciparum/immunology , Spleen/parasitology , Animals , Cytokines/metabolism , DNA Primers/genetics , Disease Models, Animal , Erythrocytes/cytology , Humans , Malaria, Falciparum/parasitology , Parasitemia/parasitology , Parasitemia/pathology , Real-Time Polymerase Chain Reaction , Saimiri , Spleen/pathology
7.
Comp Med ; 61(5): 457-61, 2011 Oct.
Article En | MEDLINE | ID: mdl-22330355

Obesity is a risk factor for several diseases including type 2 diabetes and cardiovascular disease. The aim of this study was to compare the relationships of waist circumference and body weight with circulating markers of metabolic, cardiovascular, and hepatic function in chimpanzees (Pan troglodytes). After a 12-h fast, blood was collected from 39 adult captive chimpanzees for measurement of serum glucose, BUN, creatinine, albumin, cholesterol, ALT, AST, ALP, total and direct bilirubin, triglyceride, and insulin, and waist circumference and body weight were measured. Waist circumference was positively correlated with systolic and diastolic blood pressure, glucose, insulin resistance as estimated by the homeostatic model assessment method, and albumin in female chimpanzees and with triglyceride in female and male chimpanzees. Body weight was correlated significantly with systolic and diastolic blood pressure in female chimpanzees and triglyceride in male chimpanzees. Male chimpanzees were heavier and had lower diastolic blood pressure, greater creatinine, albumin, AST, ALP, total bilirubin, and direct bilirubin values than did female chimpanzees. The relationships between waist circumference and blood pressure and triglyceride are consistent with those reported in humans and other primate species. In conclusion, our study is the first work to demonstrate a relationship between waist circumference and metabolic risk factors in chimpanzees. Results demonstrated that waist circumference was associated with more metabolic risk factors than was body weight, particularly in female chimpanzees.


Animals, Laboratory , Body Weight/physiology , Metabolome/physiology , Pan troglodytes/metabolism , Pan troglodytes/physiology , Waist Circumference/physiology , Animals , Blood Chemical Analysis/veterinary , Blood Pressure/physiology , Body Weights and Measures/veterinary , Female , Insulin Resistance/physiology , Male , Models, Biological , Pan troglodytes/blood
8.
Am J Trop Med Hyg ; 81(2): 235-9, 2009 Aug.
Article En | MEDLINE | ID: mdl-19635876

Non-specific lymphocytic myocarditis (NLM) is frequently observed in baboons within the endemic range of Trypanosoma cruzi. We sought to determine whether T. cruzi infection is a cause of baboon NLM. We evaluated serial histologic sections of cardiac muscle, blood cultures, immunohistochemistry, serology, polymerase chain reaction, and clinical pathology from 31 baboons with NLM to determine whether T. cruzi infection is associated with NLM. Eleven baboons with no evidence of T. cruzi infection by serology and no NLM were used as controls. Seropositivity for T. cruzi was 45% in baboons with NLM compared with a 2-3% colony prevalence. NLM lesion severity was significantly higher in seropositive than seronegative baboons with NLM. NLM was significantly more common in older baboons. No statistical association between NLM and sex, weight, or clinical pathology was found. These results suggest an association between NLM and T. cruzi infection in the baboon.


Chagas Cardiomyopathy/veterinary , Monkey Diseases/parasitology , Papio , Trypanosoma cruzi/isolation & purification , Animals , Chagas Cardiomyopathy/parasitology , Female , Male , Myocardium/pathology
9.
J Med Primatol ; 38(5): 302-9, 2009 Oct.
Article En | MEDLINE | ID: mdl-19457157

BACKGROUND: There is little information available concerning trichobezoars in the non-human primate literature. METHODS: We evaluated 118 cases of trichobezoar in baboons over a 29-year period at the Southwest National Primate Research Center. RESULTS: The anatomic locations affected in decreasing order were the stomach, small intestine, cecum, esophagus and colon. The most common clinical history was weight loss. The most frequent associated pathology included gastrointestinal inflammation and ulceration, emaciation, peritonitis, intussusception, pneumonia, and aspiration. Trichobezoars were the cause of death in nine baboons and the reason for euthanasia in 12. Females were 2.14 times more likely than males to be affected. The greater the percentage of group housing time, the more likely the baboon is to develop trichobezoars. CONCLUSIONS: The baboon may present a useful model to evaluate the etiology, genetic predisposition, physiopathology, neurobiology, and treatment response of trichobezoars.


Bezoars/veterinary , Gastrointestinal Tract/pathology , Monkey Diseases/pathology , Papio , Animals , Bezoars/etiology , Bezoars/pathology , Female , Male , Monkey Diseases/etiology , Trichotillomania/complications
...