Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 15(46): 18891-18900, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37975176

RESUMEN

The growth of Ag clusters on amorphous carbon substrates is studied in situ by X-ray scattering experiments, whose final outcome is imaged by electron microscopy. The real-time analysis of the growth process at room temperature shows the formation of a large majority of icosahedral structures by a shell-by-shell growth mode which produces smooth and nearly defect-free structures. Molecular dynamics simulations supported by ab initio calculations reveal that the shell-by-shell mode is possible because of the occurrence of collective displacements which involve the concerted motion of many atoms of the growing shell. These collective processes are a kind of black swan event, as they occur suddenly and rarely, but their occurrence is decisive for the final outcome of the growth. Annealing and ageing experiments show that the as-grown icosahedra are metastable, in agreement with the energetic stability calculations.

2.
Faraday Discuss ; 242(0): 35-51, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36349781

RESUMEN

The Ag/Co nanoalloy system is a model system situated energetically at the limit of stability of the core-shell chemical ordering with respect to a simple phase separation behavior. This makes the system highly susceptible to effects of the environment, such as interaction with a substrate. However, kinetic effects may also be exploited by careful atom-by-atom particle growth that allows to lock in certain out-of-equilibrium configurations, such as off-center, quasi-Janus and even Janus type particles. In this contribution, we explore to what extent out-of-equilibrium structures are due to kinetic effects and the influence of the interaction of the particles with an amorphous carbon substrate by a joint experimental and molecular dynamics study. The simulation set up performed at 300 K and 600 K mimicks the experimental growth process. The substrate deforms the particles, but has also an ordering effect on particle orientation and particle structure. In the case of growth of Ag on Co seeds, particles assume close to equilibrium quasi-Janus structures, while for the deposition of Co on Ag seeds, highly out-of-equilibrium structures with several subsurface Co clusters are obtained.

3.
ACS Appl Mater Interfaces ; 6(23): 20700-8, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25408428

RESUMEN

This paper reports the preparation and properties of color-switchable fluorescent carbon nanodots (C-dots). C-dots that emit dark turquoise and green-yellow fluorescence under 365 nm UV illumination were obtained from the hydrothermal decomposition of citric acid. Dark green fluorescent C-dots were obtained by conjugating prepared C-dots to form C-dot@C-dot nanoparticles. After successful conjugation of the C-dots, the fluorescence emission undergoes a blue-shift of nearly 20 nm (∼0.15 eV) under UV excitation at 370 nm. The C-dots emit goldenrod, green-yellow, and gold light under excitation at 455 nm, which shows that the prepared C-dots are color-switchable. Furthermore, conjugation of the C-dots results in enhanced, red-shifted absorption of the π-π* transition of the aromatic sp(2) domains due to the conjugated π-electron system. N incorporation in the carbon structure leads to a degree of dipoles for all the aromatic sp(2) bonds. The enhanced absorption in a wide range from 226 to 601 nm indicates extended conjugation in the C-dot@C-dot structure. The time-resolved average lifetimes for the three different types of C-dots prepared in this study are 7.10, 7.65, and 4.07 ns. The radiative rate (reduced decay lifetime) increases when the C-dots are conjugated in the C-dot@C-dot nanoparticles, leading to the enhanced fluorescence emission. The fluorescence emission of the C-dot@C-dot nanoparticles can be used in applications such as flow cytometry and cell imaging.


Asunto(s)
Carbono/química , Fluorescencia , Nanopartículas/química , Ácido Cítrico/química , Color , Citometría de Flujo , Luz
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...