Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 596(7872): 444-448, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34349262

RESUMEN

MFSD2A is a sodium-dependent lysophosphatidylcholine symporter that is responsible for the uptake of docosahexaenoic acid into the brain1,2, which is crucial for the development and performance of the brain3. Mutations that affect MFSD2A cause microcephaly syndromes4,5. The ability of MFSD2A to transport lipid is also a key mechanism that underlies its function as an inhibitor of transcytosis to regulate the blood-brain barrier6,7. Thus, MFSD2A represents an attractive target for modulating the permeability of the blood-brain barrier for drug delivery. Here we report the cryo-electron microscopy structure of mouse MFSD2A. Our structure defines the architecture of this important transporter, reveals its unique extracellular domain and uncovers its substrate-binding cavity. The structure-together with our functional studies and molecular dynamics simulations-identifies a conserved sodium-binding site, reveals a potential lipid entry pathway and helps to rationalize MFSD2A mutations that underlie microcephaly syndromes. These results shed light on the critical lipid transport function of MFSD2A and provide a framework to aid in the design of specific modulators for therapeutic purposes.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Metabolismo de los Lípidos , Simportadores/química , Simportadores/metabolismo , Animales , Sitios de Unión , Transporte Biológico , Células HEK293 , Humanos , Ratones , Modelos Moleculares , Simulación de Dinámica Molecular , Mutación , Dominios Proteicos , Sodio/metabolismo , Simportadores/genética , Simportadores/ultraestructura
2.
ACS Chem Biol ; 16(1): 106-115, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33315366

RESUMEN

The cell membrane of brain endothelial cells is enriched in omega-3 phospholipid species. Numerous omega-3 phospholipid species were recently proposed to be important for maintaining the low rate of transcytosis and, thus, could be important for regulating one of the mechanisms of the blood brain barrier (BBB). However, the spatial distribution of these phospholipid species within the brain was previously unknown. Here, we combined advanced mass spectrometry imaging techniques to generate a map of these phospholipids in the brain at near single cell resolution. Furthermore, we explored the effects of omega-3 dietary deprivation on both docosahexaenoic acid (DHA)-containing phospholipids and the global brain phospholipid profile. We demonstrate the unique spatial distribution of individual DHA-containing phospholipids, which may be important for the regiospecific properties of the BBB. Finally, 24 diet discriminative phospholipids were identified and showed an increase in saturated phospholipid species and ceramide containing phospholipid species under omega-3 dietary deficiency.


Asunto(s)
Ácidos Grasos Omega-3/metabolismo , Fosfolípidos/farmacología , Transcitosis/efectos de los fármacos , Animales , Barrera Hematoencefálica , Femenino , Masculino , Ratones , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
3.
Nat Neurosci ; 23(8): 927-938, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32514138

RESUMEN

Human genetic data indicate that microglial dysfunction contributes to the pathology of Alzheimer's disease (AD), exemplified by the identification of coding variants in triggering receptor expressed on myeloid cells 2 (TREM2) and, more recently, in PLCG2, a phospholipase-encoding gene expressed in microglia. Although studies in mouse models have implicated specific Trem2-dependent microglial functions in AD, the underlying molecular mechanisms and translatability to human disease remain poorly defined. In this study, we used genetically engineered human induced pluripotent stem cell-derived microglia-like cells to show that TREM2 signals through PLCγ2 to mediate cell survival, phagocytosis, processing of neuronal debris, and lipid metabolism. Loss of TREM2 or PLCγ2 signaling leads to a shared signature of transcriptional dysregulation that underlies these phenotypes. Independent of TREM2, PLCγ2 also signals downstream of Toll-like receptors to mediate inflammatory responses. Therefore, PLCγ2 activity regulates divergent microglial functions via distinct TREM2-dependent and -independent signaling and might be involved in the transition to a microglial state associated with neurodegenerative disease.


Asunto(s)
Inflamación/metabolismo , Glicoproteínas de Membrana/metabolismo , Microglía/metabolismo , Fosfolipasa C gamma/metabolismo , Receptores Inmunológicos/metabolismo , Transducción de Señal/fisiología , Animales , Supervivencia Celular/fisiología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Glicoproteínas de Membrana/genética , Ratones , Ratones Noqueados , Neuronas/metabolismo , Fagocitosis/fisiología , Fosfolipasa C gamma/genética , Receptores Inmunológicos/genética
4.
Neuron ; 105(5): 837-854.e9, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-31902528

RESUMEN

Loss-of-function (LOF) variants of TREM2, an immune receptor expressed in microglia, increase Alzheimer's disease risk. TREM2 senses lipids and mediates myelin phagocytosis, but its role in microglial lipid metabolism is unknown. Combining chronic demyelination paradigms and cell sorting with RNA sequencing and lipidomics, we find that wild-type microglia acquire a disease-associated transcriptional state, while TREM2-deficient microglia remain largely homeostatic, leading to neuronal damage. TREM2-deficient microglia phagocytose myelin debris but fail to clear myelin cholesterol, resulting in cholesteryl ester (CE) accumulation. CE increase is also observed in APOE-deficient glial cells, reflecting impaired brain cholesterol transport. This finding replicates in myelin-treated TREM2-deficient murine macrophages and human iPSC-derived microglia, where it is rescued by an ACAT1 inhibitor and LXR agonist. Our studies identify TREM2 as a key transcriptional regulator of cholesterol transport and metabolism under conditions of chronic myelin phagocytic activity, as TREM2 LOF causes pathogenic lipid accumulation in microglia.


Asunto(s)
Encéfalo/metabolismo , Colesterol/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana/genética , Microglía/metabolismo , Vaina de Mielina/metabolismo , Fagocitosis/genética , Receptores Inmunológicos/genética , Acetil-CoA C-Acetiltransferasa/antagonistas & inhibidores , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Ésteres del Colesterol/metabolismo , Modelos Animales de Enfermedad , Citometría de Flujo , Humanos , Células Madre Pluripotentes Inducidas , Metabolismo de los Lípidos/genética , Lipidómica , Receptores X del Hígado/agonistas , Ratones , Ratones Noqueados , Ratones Noqueados para ApoE , RNA-Seq
5.
Artículo en Inglés | MEDLINE | ID: mdl-31451511

RESUMEN

Neurodegenerative disease is characterized by the progressive deterioration of neuronal function caused by the degeneration of synapses, axons, and ultimately the death of nerve cells. An increased understanding of the mechanisms underlying altered cellular homeostasis and neurodegeneration is critical to the development of effective treatments for disease. Here, we review what is known about neuronal cell death and how it relates to our understanding of neurodegenerative disease pathology. First, we discuss prominent molecular signaling pathways that drive neuronal loss, and highlight the upstream cell biology underlying their activation. We then address how neuronal death may occur during disease in response to neuron intrinsic and extrinsic stressors. An improved understanding of the molecular mechanisms underlying neuronal dysfunction and cell death will open up avenues for clinical intervention in a field lacking disease-modifying treatments.


Asunto(s)
Muerte Celular , Enfermedades Neurodegenerativas/etiología , Neuronas/fisiología , Animales , Progresión de la Enfermedad , Humanos , Enfermedades Neurodegenerativas/terapia
6.
Neuron ; 94(3): 581-594.e5, 2017 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-28416077

RESUMEN

The blood-brain barrier (BBB) provides a constant homeostatic brain environment that is essential for proper neural function. An unusually low rate of vesicular transport (transcytosis) has been identified as one of the two unique properties of CNS endothelial cells, relative to peripheral endothelial cells, that maintain the restrictive quality of the BBB. However, it is not known how this low rate of transcytosis is achieved. Here we provide a mechanism whereby the regulation of CNS endothelial cell lipid composition specifically inhibits the caveolae-mediated transcytotic route readily used in the periphery. An unbiased lipidomic analysis reveals significant differences in endothelial cell lipid signatures from the CNS and periphery, which underlie a suppression of caveolae vesicle formation and trafficking in brain endothelial cells. Furthermore, lipids transported by Mfsd2a establish a unique lipid environment that inhibits caveolae vesicle formation in CNS endothelial cells to suppress transcytosis and ensure BBB integrity.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Caveolas/metabolismo , Metabolismo de los Lípidos/genética , Proteínas de Transporte de Membrana/genética , Transcitosis/genética , Animales , Barrera Hematoencefálica/ultraestructura , Western Blotting , Caveolas/ultraestructura , Células Endoteliales , Células HEK293 , Humanos , Inmunohistoquímica , Proteínas de Transporte de Membrana/metabolismo , Ratones , Ratones Noqueados , Microscopía Confocal , Microscopía Electrónica de Transmisión , Permeabilidad , Simportadores
7.
Annu Rev Neurosci ; 38: 25-46, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-25782970

RESUMEN

The brain, which represents 2% of body mass but consumes 20% of body energy at rest, has a limited capacity to store energy and is therefore highly dependent on oxygen and glucose supply from the blood stream. Normal functioning of neural circuits thus relies on adequate matching between metabolic needs and blood supply. Moreover, not only does the brain need to be densely vascularized, it also requires a tightly controlled environment free of toxins and pathogens to provide the proper chemical composition for synaptic transmission and neuronal function. In this review, we focus on three major factors that ensure optimal brain perfusion and function: the patterning of vascular networks to efficiently deliver blood and nutrients, the function of the blood-brain barrier to maintain brain homeostasis, and the regulation of cerebral blood flow to adequately couple energy supply to neural function.


Asunto(s)
Encéfalo/irrigación sanguínea , Encéfalo/citología , Neuronas/fisiología , Animales , Barrera Hematoencefálica/fisiología , Encéfalo/fisiología , Homeostasis/fisiología , Humanos
8.
Nature ; 509(7501): 507-11, 2014 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-24828040

RESUMEN

The central nervous system (CNS) requires a tightly controlled environment free of toxins and pathogens to provide the proper chemical composition for neural function. This environment is maintained by the 'blood-brain barrier' (BBB), which is composed of blood vessels whose endothelial cells display specialized tight junctions and extremely low rates of transcellular vesicular transport (transcytosis). In concert with pericytes and astrocytes, this unique brain endothelial physiological barrier seals the CNS and controls substance influx and efflux. Although BBB breakdown has recently been associated with initiation and perpetuation of various neurological disorders, an intact BBB is a major obstacle for drug delivery to the CNS. A limited understanding of the molecular mechanisms that control BBB formation has hindered our ability to manipulate the BBB in disease and therapy. Here we identify mechanisms governing the establishment of a functional BBB. First, using a novel tracer-injection method for embryos, we demonstrate spatiotemporal developmental profiles of BBB functionality and find that the mouse BBB becomes functional at embryonic day 15.5 (E15.5). We then screen for BBB-specific genes expressed during BBB formation, and find that major facilitator super family domain containing 2a (Mfsd2a) is selectively expressed in BBB-containing blood vessels in the CNS. Genetic ablation of Mfsd2a results in a leaky BBB from embryonic stages through to adulthood, but the normal patterning of vascular networks is maintained. Electron microscopy examination reveals a dramatic increase in CNS-endothelial-cell vesicular transcytosis in Mfsd2a(-/-) mice, without obvious tight-junction defects. Finally we show that Mfsd2a endothelial expression is regulated by pericytes to facilitate BBB integrity. These findings identify Mfsd2a as a key regulator of BBB function that may act by suppressing transcytosis in CNS endothelial cells. Furthermore, our findings may aid in efforts to develop therapeutic approaches for CNS drug delivery.


Asunto(s)
Barrera Hematoencefálica/embriología , Barrera Hematoencefálica/fisiología , Proteínas de Transporte de Membrana/metabolismo , Animales , Vasos Sanguíneos/metabolismo , Corteza Cerebral/irrigación sanguínea , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Sistemas de Liberación de Medicamentos , Células Endoteliales/metabolismo , Femenino , Perfilación de la Expresión Génica , Masculino , Proteínas de Transporte de Membrana/deficiencia , Proteínas de Transporte de Membrana/genética , Ratones , Neovascularización Fisiológica , Pericitos/metabolismo , Análisis Espacio-Temporal , Simportadores , Uniones Estrechas/metabolismo , Uniones Estrechas/patología , Transcitosis
9.
Genes Dev ; 26(19): 2222-35, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23028146

RESUMEN

The Drosophila transmembrane semaphorin-1a (Sema-1a) is a repulsive guidance cue that uses the Plexin A (PlexA) receptor during neural development. Sema-1a is required in axons to facilitate motor axon defasciculation at guidance choice points. We found that mutations in the trol gene strongly suppress Sema-1a-mediated repulsive axon guidance. trol encodes the phylogenetically conserved secreted heparan sulfate proteoglycan (HSPG) perlecan, a component of the extracellular matrix. Motor axon guidance defects in perlecan mutants resemble those observed in Sema-1a- and PlexA-null mutant embryos, and perlecan mutants genetically interact with PlexA and Sema-1a. Perlecan protein is found in both the CNS and the periphery, with higher expression levels in close proximity to motor axon trajectories and pathway choice points. Restoring perlecan to mutant motor neurons rescues perlecan axon guidance defects. Perlecan augments the reduction in phospho-focal adhesion kinase (phospho-FAK) levels that result from treating insect cells in vitro with Sema-1a, and genetic interactions among integrin, Sema-1a, and FAK in vivo support an antagonistic relationship between Sema-1a and integrin signaling. Therefore, perlecan is required for Sema-1a-PlexA-mediated repulsive guidance, revealing roles for extracellular matrix proteoglycans in modulating transmembrane guidance cue signaling during neural development.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Matriz Extracelular/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo , Neuronas Motoras/citología , Semaforinas/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Perfilación de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Proteoglicanos de Heparán Sulfato/genética , Neuronas Motoras/metabolismo , Mutación , Fosforilación , Transducción de Señal
10.
J Peripher Nerv Syst ; 17 Suppl 3: 34-7, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23279430

RESUMEN

Longitudinal axon fascicles within the Drosophila embryonic CNS provide connections between body segments and are required for coordinated neural signaling along the anterior-posterior axis. We find that the establishment of CNS longitudinal tracts, and the formation of precise chordotonal mechanosensory afferent innervation to the same CNS region, are coordinately regulated by the secreted semaphorins Sema-2a and Sema-2b. Both Sema-2a and Sema-2b utilize the same neuronal receptor, plexin B (PlexB), but they serve repulsive and attractive functions, respectively, to promote interneuron fascicle assembly and sensory afferent connectivity. In the absence of Sema-2b or PlexB, chordotonal afferent connectivity within the CNS is severely disrupted, as are select interneuron pathways within longitudinal fascicles, resulting in specific larval behavioral deficits. These results reveal that distinct semaphorin-mediated guidance functions converge at the PlexB receptor, and that attractive and repulsive functions mediated by this receptor are critical for functional neural circuit assembly.


Asunto(s)
Sistema Nervioso Central/embriología , Drosophila/embriología , Neurogénesis/fisiología , Células Receptoras Sensoriales/citología , Animales , Sistema Nervioso Central/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Semaforinas/metabolismo , Células Receptoras Sensoriales/metabolismo
11.
Neuron ; 70(2): 281-98, 2011 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-21521614

RESUMEN

Longitudinal axon fascicles within the Drosophila embryonic CNS provide connections between body segments and are required for coordinated neural signaling along the anterior-posterior axis. We show here that establishment of select CNS longitudinal tracts and formation of precise mechanosensory afferent innervation to the same CNS region are coordinately regulated by the secreted semaphorins Sema-2a and Sema-2b. Both Sema-2a and Sema-2b utilize the same neuronal receptor, plexin B (PlexB), but serve distinct guidance functions. Localized Sema-2b attraction promotes the initial assembly of a subset of CNS longitudinal projections and subsequent targeting of chordotonal sensory afferent axons to these same longitudinal connectives, whereas broader Sema-2a repulsion serves to prevent aberrant innervation. In the absence of Sema-2b or PlexB, chordotonal afferent connectivity within the CNS is severely disrupted, resulting in specific larval behavioral deficits. These results reveal that distinct semaphorin-mediated guidance functions converge at PlexB and are critical for functional neural circuit assembly.


Asunto(s)
Vías Aferentes/fisiología , Tipificación del Cuerpo/fisiología , Sistema Nervioso Central/fisiología , Proteínas de Drosophila/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/fisiología , Receptores de Superficie Celular/metabolismo , Semaforinas/fisiología , Vías Aferentes/embriología , Fosfatasa Alcalina/metabolismo , Animales , Animales Modificados Genéticamente , Axones/fisiología , Conducta Animal , Tipificación del Cuerpo/genética , Sistema Nervioso Central/citología , Sistema Nervioso Central/embriología , Drosophila , Proteínas de Drosophila/genética , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Glicoproteínas de Membrana/metabolismo , Movimiento/fisiología , Mutación/genética , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Estimulación Física , Receptores de Superficie Celular/genética , Semaforinas/clasificación , Semaforinas/genética , Transducción de Señal/genética , Transducción de Señal/fisiología , Vibración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...