Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Physiol ; 601(7): 1247-1264, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36797985

RESUMEN

The sympathetic nervous system vitally regulates autonomic functions, including cardiac activity. Postganglionic neurons of the sympathetic chain ganglia relay signals from the central nervous system to autonomic peripheral targets. Disrupting this flow of information often dysregulates organ function and leads to poor health outcomes. Despite the importance of these sympathetic neurons, fundamental aspects of the neurocircuitry within peripheral ganglia remain poorly understood. Conventionally, simple monosynaptic cholinergic pathways from preganglionic neurons are thought to activate postganglionic sympathetic neurons. However, early studies suggested more complex neurocircuits may be present within sympathetic ganglia. The present study recorded synaptic responses in sympathetic stellate ganglia neurons following electrical activation of the pre- and postganglionic nerve trunks and used genetic strategies to assess the presence of collateral projections between postganglionic neurons of the stellate ganglia. Orthograde activation of the preganglionic nerve trunk, T-2, uncovered high jitter synaptic latencies consistent with polysynaptic connections. Pharmacological inhibition of nicotinic acetylcholine receptors with hexamethonium blocked all synaptic events. To confirm that high jitter, polysynaptic events were due to the presence of cholinergic collaterals from postganglionic neurons within the stellate ganglion, we knocked out choline acetyltransferase in adult noradrenergic neurons. This genetic knockout eliminated orthograde high jitter synaptic events and EPSCs evoked by retrograde activation. These findings suggest that cholinergic collateral projections arise from noradrenergic neurons within sympathetic ganglia. Identifying the contributions of collateral excitation to normal physiology and pathophysiology is an important area of future study and may offer novel therapeutic targets for the treatment of autonomic imbalance. KEY POINTS: Electrical stimulation of a preganglionic nerve trunk evoked fast synaptic transmission in stellate ganglion neurons with low and high jitter latencies. Retrograde stimulation of a postganglionic nerve trunk evoked direct, all-or-none action currents and delayed nicotinic EPSCs indistinguishable from orthogradely-evoked EPSCs in stellate neurons. Nicotinic acetylcholine receptor blockade prevented all spontaneous and evoked synaptic activity. Knockout of acetylcholine production in noradrenergic neurons eliminated all retrogradely-evoked EPSCs but did not change retrograde action currents, indicating that noradrenergic neurons have cholinergic collaterals connecting neurons within the stellate ganglion.


Asunto(s)
Neuronas Adrenérgicas , Ratones , Animales , Ratones Noqueados , Sistema Nervioso Simpático/fisiología , Ganglios Simpáticos/fisiología , Colinérgicos
2.
Front Cardiovasc Med ; 9: 842656, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35224065

RESUMEN

The sympathetic nervous system plays a critical role in regulating many autonomic functions, including cardiac rhythm. The postganglionic neurons in the sympathetic chain ganglia are essential components that relay sympathetic signals to target tissues and disruption of their activity leads to poor health outcomes. Despite this importance, the neurocircuitry within sympathetic ganglia is poorly understood. Canonically, postganglionic sympathetic neurons are thought to simply be activated by monosynaptic inputs from preganglionic cholinergic neurons of the intermediolateral cell columns of the spinal cord. Early electrophysiological studies of sympathetic ganglia where the peripheral nerve trunks were electrically stimulated identified excitatory cholinergic synaptic events in addition to retrograde action potentials, leading some to speculate that excitatory collateral projections are present. However, this seemed unlikely since sympathetic postganglionic neurons were known to synthesize and release norepinephrine and expression of dual neurochemical phenotypes had not been well recognized. In vitro studies clearly established the capacity of cultured sympathetic neurons to express and release acetylcholine and norepinephrine throughout development and even in pathophysiological conditions. Given this insight, we believe that the canonical view of ganglionic transmission needs to be reevaluated and may provide a mechanistic understanding of autonomic imbalance in disease. Further studies likely will require genetic models manipulating neurochemical phenotypes within sympathetic ganglia to resolve the function of cholinergic collateral projections between postganglionic neurons. In this perspective article, we will discuss the evidence for collateral projections in sympathetic ganglia, determine if current laboratory techniques could address these questions, and discuss potential obstacles and caveats.

3.
J Physiol ; 599(23): 5261-5279, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34676533

RESUMEN

Vagus nerve stimulation (VNS) treats patients with drug-resistant epilepsy, depression and heart failure, but the mechanisms responsible are uncertain. The mild stimulus intensities used in chronic VNS suggest activation of myelinated primary visceral afferents projecting to the nucleus of the solitary tract (NTS). Here, we monitored the activity of second and higher order NTS neurons in response to peripheral vagal activation using therapeutic VNS criteria. A bipolar stimulating electrode activated the left cervical vagus nerve, and stereotaxically placed single tungsten electrodes recorded unit activity from the left caudomedial NTS of chloralose-anaesthetized rats. High-intensity single electrical stimuli established vagal afferent conduction velocity (myelinated A-type or unmyelinated C-type) as well as synaptic order (second vs. higher order using paired electrical stimuli) for inputs to single NTS neurons. Then, VNS treatment was applied. A mid-collicular knife cut (KC) divided the brainstem from all supramedullary regions to determine their contribution to NTS activity. Our chief findings indicate that the KC reduced basal spontaneous activity of second-order NTS neurons receiving myelinated vagal input by 85%. In these neurons, acute VNS increased activity similarly in Control and KC animals. Interestingly, the KC interrupted VNS activation of higher order NTS neurons and second-order NTS neurons receiving unmyelinated vagal input, indicating that supramedullary descending projections to NTS are needed to amplify the peripheral neuronal signal from VNS. The present study begins to define the pathways activated during VNS and will help to better identify the central nervous system contributions to the therapeutic benefits of VNS therapy. KEY POINTS: Vagus nerve stimulation is routinely used in the clinic to treat epilepsy and depression, despite our uncertainty about how this treatment works. For this study, the connections between the nucleus of the solitary tract (NTS) and the higher brain regions were severed to learn more about their contribution to activity of these neurons during stimulation. Severing these brain connections reduced baseline activity as well as reducing stimulation-induced activation for NTS neurons receiving myelinated vagal input. Higher brain regions play a significant role in maintaining both normal activity in NTS and indirect mechanisms of enhancing NTS neuronal activity during vagus nerve stimulation.


Asunto(s)
Estimulación del Nervio Vago , Animales , Tronco Encefálico , Estimulación Eléctrica , Humanos , Neuronas , Ratas , Núcleo Solitario , Nervio Vago
4.
Brain Res ; 1769: 147625, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34416255

RESUMEN

The nucleus of the solitary tract (NTS) receives viscerosensory information from the vagus nerve to regulate diverse homeostatic reflex functions. The NTS projects to a wide network of other brain regions, including the paraventricular nucleus of the hypothalamus (PVN). Here we examined the synaptic characteristics of primary afferent pathways to PVN-projecting NTS neurons in rat brainstem slices.Expression of the Transient Receptor Potential Vanilloid receptor (TRPV1+ ) distinguishes C-fiber afferents within the solitary tract (ST) from A-fibers (TRPV1-). We used resiniferatoxin (RTX), a TRPV1 agonist, to differentiate the two. The variability in the latency (jitter) of evoked excitatory postsynaptic currents (ST-EPSCs) distinguished monosynaptic from polysynaptic ST-EPSCs. Rhodamine injected into PVN was retrogradely transported to identify PVN-projecting NTS neurons within brainstem slices. Graded shocks to the ST elicited all-or-none EPSCs in rhodamine-positive NTS neurons with latencies that had either low jitter (<200 µs - monosynaptic), high jitter (>200 µs - polysynaptic inputs) or both. RTX blocked ST-evoked TRPV1 + EPSCs whether mono- or polysynaptic. Most PVN-projecting NTS neurons (17/21 neurons) had at least one input polysynaptically connected to the ST. Compared to unlabeled NTS neurons, PVN-projecting NTS neurons were more likely to receive indirect inputs and be higher order. Surprisingly, sEPSC rates for PVN-projecting neurons were double that of unlabeled NTS neurons. The ST synaptic responses for PVN-projecting NTS neurons were either all TRPV1+ or all TRPV1-, including neurons that received both direct and indirect inputs. Overall, PVN-projecting NTS neurons received direct and indirect vagal afferent information with strict segregation regarding TRPV1 expression.


Asunto(s)
Vías Aferentes/fisiología , Fibras Nerviosas Amielínicas/fisiología , Núcleo Hipotalámico Paraventricular/fisiología , Nervio Vago/fisiología , Animales , Diterpenos/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Masculino , Núcleo Hipotalámico Paraventricular/citología , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Núcleo Solitario/metabolismo , Sinapsis/efectos de los fármacos , Canales Catiónicos TRPV/agonistas , Canales Catiónicos TRPV/metabolismo , Nervio Vago/citología
5.
F1000Res ; 82019.
Artículo en Inglés | MEDLINE | ID: mdl-31824648

RESUMEN

The transient receptor potential vanilloid 1 (TRPV1) is densely expressed in spinal sensory neurons as well as in cranial sensory neurons, including their central terminal endings. Recent work in the less familiar cranial sensory neurons, despite their many similarities with spinal sensory neurons, suggest that TRPV1 acts as a calcium channel to release a discrete population of synaptic vesicles. The modular and independent regulation of release offers new questions about nanodomain organization of release and selective actions of G protein-coupled receptors.


Asunto(s)
Transducción de Señal , Animales , Potenciales Postsinápticos Excitadores , Neuronas Aferentes , Núcleo Solitario , Canales Catiónicos TRPV
6.
Neuroscientist ; 25(5): 408-419, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31375041

RESUMEN

Nervous system communication relies on neurotransmitter release for synaptic transmission between neurons. Neurotransmitter is contained within vesicles in presynaptic terminals and intraterminal calcium governs the fundamental step of their release into the synaptic cleft. Despite a common dependence on calcium, synaptic transmission and its modulation varies highly across the nervous system. The precise mechanisms that underlie this heterogeneity, however, remain unclear. The present review highlights recent data that reveal vesicles sourced from separate pools define discrete modes of release. A rich diversity of regulatory machinery may further distinguish the different forms of vesicle release, including presynaptic proteins involved in trafficking, alignment, and exocytosis. These multiple vesicle release mechanisms and vesicle pools likely depend on the arrangement of vesicles in relation to specific calcium entry pathways that create compartmentalized spheres of calcium influence (i.e., domains). This diversity permits release specialization. This review details examples of how individual neurons rely on multiple calcium sources and unique regulatory schemes to provide differential release and discrete modulation of neurotransmitter release from specific vesicle pools-as part of network signal integration.


Asunto(s)
Señalización del Calcio/fisiología , Terminales Presinápticos/metabolismo , Transmisión Sináptica/fisiología , Vesículas Sinápticas/metabolismo , Animales , Exocitosis/fisiología , Ácido Glutámico/metabolismo , Humanos
7.
J Neurophysiol ; 122(3): 1207-1212, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31314636

RESUMEN

Baroreceptors play a pivotal role in the regulation of blood pressure through moment to moment sensing of arterial blood pressure and providing information to the central nervous system to make autonomic adjustments to maintain appropriate tissue perfusion. A recent publication by Zeng and colleagues (Zeng WZ, Marshall KL, Min S, Daou I, Chapleau MW, Abboud FM, Liberles SD, Science 362: 464-467, 2018) suggests the mechanosensitive ion channels Piezo1 and Piezo2 represent the cellular mechanism by which baroreceptor nerve endings sense changes in arterial blood pressure. However, before Piezo1 and Piezo2 are accepted as the sensor of baroreceptors, the question must be asked of what criteria are necessary to establish this and how well the report of Zeng and colleagues (Zeng WZ, Marshall KL, Min S, Daou I, Chapleau MW, Abboud FM, Liberles SD, Science 362: 464-467, 2018) satisfies these criteria. We briefly review baroreceptor function, outline criteria that a putative neuronal sensor of blood pressure must satisfy, and discuss whether the recent findings of Zeng and colleagues suitably meet these criteria. Despite the provocative hypothesis, there are significant concerns regarding the evidence supporting a role of Piezo1/Piezo2 in arterial baroreceptor function.


Asunto(s)
Sistema Nervioso Autónomo/fisiología , Barorreflejo/fisiología , Presión Sanguínea/fisiología , Canales Iónicos/fisiología , Presorreceptores/fisiología , Animales , Humanos
8.
Brain Res ; 1721: 146346, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31348913

RESUMEN

The serotonin 3 receptor (5-HT3R) is a calcium-permeant channel heterogeneously expressed in solitary tract (ST) afferents. ST afferents synapse in the nucleus of the solitary tract (NTS) and rely on a mix of voltage-dependent calcium channels (CaVs) to control synchronous glutamate release (ST-EPSCs). CaV activation triggers additional, delayed release of glutamate (asynchronous EPSCs) that trails after the ST-EPSCs but only from afferents expressing the calcium-permeable, transient receptor potential vanilloid type 1 receptor (TRPV1). Most afferents express TRPV1 and have high rates of spontaneous glutamate release (sEPSCs) that is independent of CaVs. Here, we tested whether 5-HT3R-sourced calcium contributes to these different forms of glutamate release in horizontal NTS slices from rats. The 5-HT3R selective agonist, m-chlorophenyl biguanide hydrochloride (PBG), enhanced sEPSCs and/or delayed the arrival times of ST-EPSCs (i.e. increased latency). The specific 5-HT3R antagonist, ondansetron, attenuated these effects consistent with direct activation of 5-HT3Rs. PBG did not alter ST-EPSC amplitude or asynchronous EPSCs. These independent actions suggest two distinct 5-HT3R locations; axonal expression that impedes conduction and terminal expression that mobilizes a spontaneous vesicle pool. Calcium chelation with EGTA-AM attenuated the frequency of 5-HT3R-activated sEPSCs by half. The mixture of chelation-sensitive and resistant sEPSCs suggests that 5-HT3R-activated vesicles span calcium diffusion distances that are both distal (micro-) and proximal (nanodomains) to the channel. Our results demonstrate that the calcium domains of 5-HT3Rs do not overlap other calcium sources or their respective vesicle pools. 5-HT3Rs add a unique calcium source on ST afferents as part of multiple independent synaptic signaling mechanisms.


Asunto(s)
Calcio/metabolismo , Ácido Glutámico/metabolismo , Receptores de Serotonina 5-HT3/metabolismo , Potenciales de Acción/fisiología , Animales , Capsaicina/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Masculino , Neuronas/metabolismo , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Serotonina/metabolismo , Núcleo Solitario/efectos de los fármacos , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Canales Catiónicos TRPV/metabolismo
9.
Am J Physiol Regul Integr Comp Physiol ; 315(1): R134-R143, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29590555

RESUMEN

The sympathetic nerve activity (SNA) to brown adipose tissue (BAT) regulates BAT thermogenesis to defend body temperature in cold environments or to produce fever during immune responses. The vagus nerve contains afferents that inhibit the BAT SNA and BAT thermogenesis evoked by skin cooling. We sought to determine whether activation of transient receptor potential vanilloid 1 (TRPV1) channels in the nucleus tractus solitarius (NTS), which are prominently expressed in unmyelinated vagal afferents, would affect cold-evoked BAT thermogenesis, cardiovascular parameters, or their vagal afferent-evoked responses. In urethane-chloralose-anesthetized rats, during skin cooling, nanoinjection of the TRPV1-agonist resiniferatoxin in NTS decreased BAT SNA (from 695 ± 195% of baseline during cooling to 103 ± 8% of baseline after resiniferatoxin), BAT temperature (-0.8 ± 0.1°C), expired CO2 (-0.3 ± 0.04%), mean arterial pressure (MAP; -20 ± 5 mmHg), and heart rate (-44 ± 11 beats/min). Pretreatment of NTS with the TRPV1 antagonist capsazepine prevented these resiniferatoxin-mediated effects. Intravenous injection of the TRPV1 agonist dihydrocapsaicin also decreased all the measured variables (except MAP). Bilateral cervical or subdiaphragmatic vagotomy attenuated the decreases in BAT SNA and thermogenesis evoked by nanoinjection of resiniferatoxin in NTS but did not prevent the decreases in BAT SNA and BAT thermogenesis evoked by intravenous dihydrocapsaicin. We conclude that activation of TRPV1 channels in the NTS of vagus nerve intact rats inhibits BAT SNA and decreases BAT metabolism, blood pressure, and heart rate. In contrast, the inhibition of BAT thermogenesis following systemic administration of dihydrocapsaicin does not require vagal afferent activity, consistent with a nonvagal pathway through which systemic TRPV1 agonists can inhibit BAT thermogenesis.


Asunto(s)
Tejido Adiposo Pardo/inervación , Presión Arterial/efectos de los fármacos , Capsaicina/análogos & derivados , Sistema Cardiovascular/inervación , Diterpenos/farmacología , Frecuencia Cardíaca/efectos de los fármacos , Núcleo Solitario/efectos de los fármacos , Canales Catiónicos TRPV/agonistas , Termogénesis/efectos de los fármacos , Nervio Vago/efectos de los fármacos , Animales , Capsaicina/farmacología , Masculino , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Núcleo Solitario/metabolismo , Canales Catiónicos TRPV/metabolismo , Nervio Vago/fisiología
10.
Am J Physiol Heart Circ Physiol ; 313(2): H354-H367, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28476920

RESUMEN

Vagus nerve stimulation (VNS) currently treats patients with drug-resistant epilepsy, depression, and heart failure. The mild intensities used in chronic VNS suggest that primary visceral afferents and central nervous system activation are involved. Here, we measured the activity of neurons in the nucleus of the solitary tract (NTS) in anesthetized rats using clinically styled VNS. Our chief findings indicate that VNS at threshold bradycardic intensity activated NTS neuron discharge in one-third of NTS neurons. This VNS directly activated only myelinated vagal afferents projecting to second-order NTS neurons. Most VNS-induced activity in NTS, however, was unsynchronized to vagal stimuli. Thus, VNS activated unsynchronized activity in NTS neurons that were second order to vagal afferent C-fibers as well as higher-order NTS neurons only polysynaptically activated by the vagus. Overall, cardiovascular-sensitive and -insensitive NTS neurons were similarly activated by VNS: 3/4 neurons with monosynaptic vagal A-fiber afferents, 6/42 neurons with monosynaptic vagal C-fiber afferents, and 16/21 polysynaptic NTS neurons. Provocatively, vagal A-fibers indirectly activated C-fiber neurons during VNS. Elevated spontaneous spiking was quantitatively much higher than synchronized activity and extended well into the periods of nonstimulation. Surprisingly, many polysynaptic NTS neurons responded to half the bradycardic intensity used in clinical studies, indicating that a subset of myelinated vagal afferents is sufficient to evoke VNS indirect activation. Our study uncovered a myelinated vagal afferent drive that indirectly activates NTS neurons and thus central pathways beyond NTS and support reconsideration of brain contributions of vagal afferents underpinning of therapeutic impacts.NEW & NOTEWORTHY Acute vagus nerve stimulation elevated activity in neurons located in the medial nucleus of the solitary tract. Such stimuli directly activated only myelinated vagal afferents but indirectly activated a subpopulation of second- and higher-order neurons, suggesting that afferent mechanisms and central neuron activation may be responsible for vagus nerve stimulation efficacy.


Asunto(s)
Potenciales de Acción , Potenciales Evocados , Fibras Nerviosas Mielínicas/fisiología , Fibras Nerviosas Amielínicas/fisiología , Células Receptoras Sensoriales/fisiología , Núcleo Solitario/fisiología , Estimulación del Nervio Vago/métodos , Nervio Vago/fisiología , Animales , Barorreflejo , Presión Sanguínea , Bradicardia/etiología , Bradicardia/fisiopatología , Frecuencia Cardíaca , Masculino , Modelos Animales , Vías Nerviosas/fisiología , Ratas Sprague-Dawley , Estimulación del Nervio Vago/efectos adversos
11.
PLoS One ; 12(3): e0174915, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28358887

RESUMEN

The recycling of vesicle membrane fused during exocytosis is essential to maintaining neurotransmission. The GTPase dynamin is involved in pinching off membrane to complete endocytosis and can be inhibited by dynasore resulting in activity-dependent depletion of release-competent synaptic vesicles. In rat brainstem slices, we examined the effects of dynasore on three different modes of glutamate release-spontaneous, evoked, and asynchronous release-at solitary tract (ST) inputs to neurons in the nucleus of the solitary tract (NTS). Intermittent bursts of stimuli to the ST interspersed with pauses in stimulation allowed examination of these three modes in each neuron continuously. Application of 100 µM dynasore rapidly increased the spontaneous EPSC (sEPSC) frequency which was followed by inhibition of both ST-evoked EPSCs (ST-EPSC) as well as asynchronous EPSCs. The onset of ST-EPSC failures was not accompanied by amplitude reduction-a pattern more consistent with conduction block than reduced probability of vesicle release. Neither result suggested that dynasore interrupted endocytosis. The dynasore response profile resembled intense presynaptic TRPV1 activation. The TRPV1 antagonist capsazepine failed to prevent dynasore increases in sEPSC frequency but did prevent the block of the ST-EPSC. In contrast, the TRPV1 antagonist JNJ 17203212 prevented both actions of dynasore in neurons with TRPV1-expressing ST inputs. In a neuron lacking TRPV1-expressing ST inputs, however, dynasore promptly increased sEPSC rate followed by block of ST-evoked EPSCs. Together our results suggest that dynasore actions on ST-NTS transmission are TRPV1-independent and changes in glutamatergic transmission are not consistent with changes in vesicle recycling and endocytosis.


Asunto(s)
Hidrazonas/farmacología , Transmisión Sináptica/efectos de los fármacos , Aferentes Viscerales/efectos de los fármacos , Aferentes Viscerales/metabolismo , Aminopiridinas/farmacología , Animales , Capsaicina/análogos & derivados , Capsaicina/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Masculino , Técnicas de Placa-Clamp , Piperazinas/farmacología , Ratas , Ratas Sprague-Dawley , Núcleo Solitario/efectos de los fármacos , Núcleo Solitario/metabolismo , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/metabolismo
12.
J Physiol ; 595(3): 901-917, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27616729

RESUMEN

KEY POINTS: Emotions are accompanied by concordant changes in visceral function, including cardiac output, respiration and digestion. One major forebrain integrator of emotional responses, the amygdala, is considered to rely on embedded visceral afferent information, although few details are known. In the present study, we retrogradely transported dye from the central nucleus of the amygdala (CeA) to identify CeA-projecting nucleus of the solitary tract (NTS) neurons for synaptic characterization and compared them with unlabelled, near-neighboor NTS neurons. Solitary tract (ST) afferents converged onto NTS-CeA second-order sensory neurons in greater numbers, as well as indirectly via polysynaptic pathways. Unexpectedly, all mono- and polysynaptic ST afferent pathways to NTS-CeA neurons were organized exclusively as either transient receptor potential cation channel subfamily V member 1 (TRPV1)-sensitive or TRPV1-resistant, regardless of whether intervening neurons were excitatory or inhibitory. This strict sorting provides viscerosensory signals to CeA about visceral conditions with respect to being either 'normal' via A-fibres or 'alarm' via TRPV1 expressing C-fibres and, accordingly, this pathway organization probably encodes interoceptive status. ABSTRACT: Emotional state is impacted by changes in visceral function, including blood pressure, breathing and digestion. A main line of viscerosensory information processing occurs first in the nucleus of the solitary tract (NTS). In the present study conducted in rats, we examined the synaptic characteristics of visceral afferent pathways to the central nucleus of the amygdala (CeA) in brainstem slices by recording from retrogradely labelled NTS projection neurons. We simultaneously recorded neuron pairs: one dye positive (i.e. NTS-CeA) and a second unlabelled neighbour. Graded shocks to the solitary tract (ST) always (93%) triggered EPSCs at CeA projecting NTS neurons. Half of the NTS-CeA neurons received at least one primary afferent input (classed 'second order') indicating that viscerosensory information arrives at the CeA conveyed via a pathway involving as few as two synapses. The remaining NTS-CeA neurons received viscerosensory input only via polysynaptic pathways. By contrast, ∼3/4 of unlabelled neighbouring neurons were directly connected to ST. NTS-CeA neurons received greater numbers of ST-related inputs compared to unlabelled NTS neurons, indicating that highly convergent viscerosensory signals reach the CeA. Remarkably, despite multifibre convergence, all single NTS-CeA neurons received inputs derived from only unmyelinated afferents [transient receptor potential cation channel subfamily V member 1 (TRPV1) expressing C-fibres] or only non-TRPV1 ST afferent inputs, and never a combination of both. Such segregation means that visceral afferent information followed separate lines to reach the CeA. Their very different physiological activation profiles mean that these parallel visceral afferent pathways encode viscerosensory signals to the amygdala that may provide interoceptive assessments to impact on behaviours.


Asunto(s)
Núcleo Amigdalino Central/fisiología , Fibras Nerviosas Amielínicas/fisiología , Núcleo Solitario/fisiología , Animales , Masculino , Neuronas/fisiología , Ratas Sprague-Dawley
13.
J Neurosci ; 36(34): 8957-66, 2016 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-27559176

RESUMEN

UNLABELLED: Most craniosensory afferents have unmyelinated axons expressing TRP Vanilloid 1 (TRPV1) receptors in synaptic terminals at the solitary tract nucleus (NTS). Neurotransmission from these synapses is characterized by substantial asynchronous EPSCs following action potential-synched EPSCs and high spontaneous rates that are thermally sensitive. The present studies blocked voltage-activated calcium channels (CaV) using the nonselective CaV blocker Cd(2+) or the specific N-type blocker ω-conotoxin GVIA to examine the calcium dependence of the synchronous, asynchronous, spontaneous, and thermally gated modes of release. In rat brainstem slices containing caudal NTS, shocks to the solitary tract (ST) triggered synchronous ST-EPSCs and trailing asynchronous EPSCs. Cd(2+) or GVIA efficiently reduced both synchronous and asynchronous EPSCs without altering spontaneous or thermal-evoked transmission. Activation of TRPV1 with either the selective agonist resiniferatoxin (150 pm) or temperature augmented basal sEPSC rates but failed to alter the synchronous or asynchronous modes of release. These data indicate that calcium sourced through TRPV1 has no access to the synchronous or asynchronous release mechanism(s) and conversely that CaV-sourced calcium does not interact with the thermally evoked mode of release. Buffering intracellular calcium with EGTA-AM or BAPTA-AM reduced asynchronous EPSC rates earlier and to a greater extent than synchronous ST-EPSC amplitudes without altering sEPSCs or thermal sensitivity. Buffering therefore distinguishes asynchronous vesicles as possessing a highly sensitive calcium sensor located perhaps more distant from CaV than synchronous vesicles or thermally evoked vesicles from TRPV1. Together, our findings suggest separate mechanisms of release for spontaneous, asynchronous and synchronous vesicles that likely reside in unique, spatially separated vesicle domains. SIGNIFICANCE STATEMENT: Most craniosensory fibers release glutamate using calcium entry from two sources: CaVs and TRPV1. We demonstrate that calcium segregation distinguishes three vesicle release mechanisms. Most surprisingly, asynchronous release is associated with CaV and not TRPV1 calcium entry. This reveals that asynchronous release is an additional and separate phenotypic marker of unmyelinated afferents rather than operated by TRPV1. The functional independence of the two calcium sources expands the regulatory repertoire of transmission and imbues these inputs with additional modulation targets for synaptic release not present at conventional CaV synapses. Peptides and lipid mediators may target one or both of these calcium sources at afferent terminals within the solitary tract nucleus to independently modify release from distinct, functionally segregated vesicle pools.


Asunto(s)
Vías Aferentes/fisiología , Calcio/metabolismo , Neuronas/fisiología , Sinapsis/metabolismo , Acetilcolina/metabolismo , Análisis de Varianza , Animales , Bloqueadores de los Canales de Calcio/farmacología , Quelantes/farmacología , Diterpenos/farmacología , Relación Dosis-Respuesta a Droga , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Ácido Glutámico/metabolismo , Técnicas In Vitro , Masculino , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Núcleo Solitario/citología , Sinapsis/efectos de los fármacos , Canales Catiónicos TRPV/metabolismo
14.
Neuropharmacology ; 101: 401-11, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26471418

RESUMEN

Vanilloids, high temperature, and low pH activate the transient receptor potential vanilloid type 1 (TRPV1) receptor. In spinal dorsal root ganglia, co-activation of one of these gating sites on TRPV1 sensitized receptor gating by other modes. Here in rat brainstem slices, we examined glutamate synaptic transmission in nucleus of the solitary tract (NTS) neurons where most cranial primary afferents express TRPV1, but TRPV1 sensitization is unknown. Electrical shocks to the solitary tract (ST) evoked EPSCs (ST-EPSCs). Activation of TRPV1 with capsaicin (100 nM) increased spontaneous EPSCs (sEPSCs) but inhibited ST-EPSCs. High concentrations of the ultra-potent vanilloid resiniferatoxin (RTX, 1 nM) similarly increased sEPSC rates but blocked ST-EPSCs. Lowering the RTX concentration to 150 pM modestly increased the frequency of the sEPSCs without causing failures in the evoked ST-EPSCs. The sEPSC rate increased with raising bath temperature to 36 °C. Such thermal responses were larger in 150 pM RTX, while the ST-EPSCs remained unaffected. Vanilloid sensitization of thermal responses persisted in TTX but was blocked by the TRPV1 antagonist capsazepine. Our results demonstrate that multimodal activation of TRPV1 facilitates sEPSC responses in more than the arithmetic sum of the two activators, i.e. co-activation sensitizes TRPV1 control of spontaneous glutamate release. Since action potential evoked glutamate release is unaltered, the work provides evidence for cooperativity in gating TRPV1 plus a remarkable separation of calcium mechanisms governing the independent vesicle pools responsible for spontaneous and evoked release at primary afferents in the NTS.


Asunto(s)
Diterpenos/farmacología , Ácido Glutámico/metabolismo , Núcleo Solitario/efectos de los fármacos , Canales Catiónicos TRPV/metabolismo , Animales , Capsaicina/farmacología , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Técnicas In Vitro , Masculino , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Fármacos del Sistema Sensorial/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Núcleo Solitario/citología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Tetrodotoxina/farmacología
15.
J Chem Neuroanat ; 72: 1-7, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26706222

RESUMEN

The vagus nerve is dominated by afferent fibers that convey sensory information from the viscera to the brain. Most vagal afferents are unmyelinated, slow-conducting C-fibers, while a smaller portion are myelinated, fast-conducting A-fibers. Vagal afferents terminate in the nucleus tractus solitarius (NTS) in the dorsal brainstem and regulate autonomic and respiratory reflexes, as well as ascending pathways throughout the brain. Vagal afferents form glutamatergic excitatory synapses with postsynaptic NTS neurons that are modulated by a variety of channels. The organization of vagal afferents with regard to fiber type and channels is not well understood. In the present study, we used tract tracing methods to identify distinct populations of vagal afferents to determine if key channels are selectively localized to specific groups of afferent fibers. Vagal afferents were labeled with isolectin B4 (IB4) or cholera toxin B (CTb) to detect unmyelinated and myelinated afferents, respectively. We find that TRPV1 channels are preferentially found in unmyelinated vagal afferents identified with IB4, with almost half of all IB4 fibers showing co-localization with TRPV1. These results agree with prior electrophysiological findings. In contrast, we found that the ATP-sensitive channel P2X3 is found in a subset of both myelinated and unmyelinated vagal afferent fibers. Specifically, 18% of IB4 and 23% of CTb afferents contained P2X3. The majority of CTb-ir vagal afferents contained neither channel. Since neither channel was found in all vagal afferents, there are likely further degrees of heterogeneity in the modulation of vagal afferent sensory input to the NTS beyond fiber type.


Asunto(s)
Fibras Nerviosas Mielínicas/metabolismo , Fibras Nerviosas Amielínicas/metabolismo , Terminales Presinápticos/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Células Receptoras Sensoriales/metabolismo , Canales Catiónicos TRPV/metabolismo , Nervio Vago/metabolismo , Animales , Toxina del Cólera/metabolismo , Lectinas/metabolismo , Masculino , Ratas Sprague-Dawley , Células Receptoras Sensoriales/ultraestructura
16.
PLoS One ; 10(5): e0127764, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25992717

RESUMEN

Temperature is fundamentally important to all biological functions including synaptic glutamate release. Vagal afferents from the solitary tract (ST) synapse on second order neurons in the nucleus of the solitary tract, and glutamate release at this first central synapse controls autonomic reflex function. Expression of the temperature-sensitive Transient Receptor Potential Vanilloid Type 1 receptor separates ST afferents into C-fibers (TRPV1+) and A-fibers (TRPV1-). Action potential-evoked glutamate release is similar between C- and A-fiber afferents, but TRPV1 expression facilitates a second form of synaptic glutamate release in C-fibers by promoting substantially more spontaneous glutamate release. The influence of temperature on different forms of glutamate release is not well understood. Here we tested how temperature impacts the generation of evoked and spontaneous release of glutamate and its relation to TRPV1 expression. In horizontal brainstem slices of rats, activation of ST primary afferents generated synchronous evoked glutamate release (ST-eEPSCs) at constant latency whose amplitude reflects the probability of evoked glutamate release. The frequency of spontaneous EPSCs in these same neurons measured the probability of spontaneous glutamate release. We measured both forms of glutamate from each neuron during ramp changes in bath temperature of 4-5 °C. Spontaneous glutamate release from TRPV1+ closely tracked with these thermal changes indicating changes in the probability of spontaneous glutamate release. In the same neurons, temperature changed axon conduction registered as latency shifts but ST-eEPSC amplitudes were constant and independent of TRPV1 expression. These data indicate that TRPV1-operated glutamate release is independent of action potential-evoked glutamate release in the same neurons. Together, these support the hypothesis that evoked and spontaneous glutamate release originate from two pools of vesicles that are independently modulated and are distinct processes.


Asunto(s)
Potenciales Evocados/fisiología , Cráneo/inervación , Temperatura , Aferentes Viscerales/fisiología , Potenciales de Acción/fisiología , Animales , Potenciales Postsinápticos Excitadores/fisiología , Ácido Glutámico , Masculino , Neuronas/fisiología , Fenotipo , Ratas Sprague-Dawley , Tiempo de Reacción/fisiología , Núcleo Solitario/fisiología , Canales Catiónicos TRPV/metabolismo
17.
J Neurophysiol ; 112(11): 2697-706, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25185814

RESUMEN

The cell-impermeant lidocaine derivative QX-314 blocks sodium channels via intracellular mechanisms. In somatosensory nociceptive neurons, open transient receptor potential vanilloid type 1 (TRPV1) receptors provide a transmembrane passageway for QX-314 to produce long-lasting analgesia. Many cranial primary afferents express TRPV1 at synapses on neurons in the nucleus of the solitary tract and caudal trigeminal nucleus (Vc). Here, we investigated whether QX-314 interrupts neurotransmission from primary afferents in rat brain-stem slices. Shocks to the solitary tract (ST) activated highly synchronous evoked excitatory postsynaptic currents (ST-EPSCs). Application of 300 µM QX-314 increased the ST-EPSC latency from TRPV1+ ST afferents, but, surprisingly, it had similar actions at TRPV1- ST afferents. Continued exposure to QX-314 blocked evoked ST-EPSCs at both afferent types. Neither the time to onset of latency changes nor the time to ST-EPSC failure differed between responses for TRPV1+ and TRPV1- inputs. Likewise, the TRPV1 antagonist capsazepine failed to prevent the actions of QX-314. Whereas QX-314 blocked ST-evoked release, the frequency and amplitude of spontaneous EPSCs remained unaltered. In neurons exposed to QX-314, intracellular current injection evoked action potentials suggesting a presynaptic site of action. QX-314 acted similarly at Vc neurons to increase latency and block EPSCs evoked from trigeminal tract afferents. Our results demonstrate that QX-314 blocked nerve conduction in cranial primary afferents without interrupting the glutamate release mechanism or generation of postsynaptic action potentials. The TRPV1 independence suggests that QX-314 either acted extracellularly or more likely entered these axons through an undetermined pathway common to all cranial primary afferents.


Asunto(s)
Nervios Craneales/efectos de los fármacos , Potenciales Postsinápticos Excitadores , Lidocaína/análogos & derivados , Neuronas Aferentes/efectos de los fármacos , Canales Catiónicos TRPV/metabolismo , Anestésicos Locales/farmacología , Animales , Capsaicina/análogos & derivados , Capsaicina/farmacología , Nervios Craneales/metabolismo , Nervios Craneales/fisiología , Lidocaína/farmacología , Masculino , Neuronas Aferentes/metabolismo , Neuronas Aferentes/fisiología , Ratas , Ratas Sprague-Dawley , Tiempo de Reacción , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/genética
18.
J Neurosci ; 34(24): 8324-32, 2014 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-24920635

RESUMEN

Action potentials trigger synaptic terminals to synchronously release vesicles, but some vesicles release spontaneously. G-protein-coupled receptors (GPCRs) can modulate both of these processes. At cranial primary afferent terminals, the GPCR cannabinoid 1 (CB1) is often coexpressed with transient receptor potential vanilloid 1 (TRPV1), a nonselective cation channel present on most afferents. Here we tested whether CB1 activation modulates synchronous, action potential-evoked (eEPSCs) and/or spontaneous (sEPSCs) EPSCs at solitary tract nucleus neurons. In rat horizontal brainstem slices, activation of solitary tract (ST) primary afferents generated ST-eEPSCs that were rapidly and reversibly inhibited from most afferents by activation of CB1 with arachidonyl-2'-chloroethylamide (ACEA) or WIN 55,212-2 [R-(+)-(2,3-dihydro-5-methyl-3-[(4-morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl)(1-naphthalenyl) methanone monomethanesulfonate]. The CB1 antagonist/inverse agonist AM251 [N-1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide] blocked these responses. Despite profound depression of ST-eEPSCs during CB1 activation, sEPSCs in these same neurons were unaltered. Changes in temperature changed sEPSC frequency only from TRPV1(+) afferents (i.e., thermal sEPSC responses only occurred in TRPV1(+) afferents). CB1 activation failed to alter these thermal sEPSC responses. However, the endogenous arachidonate metabolite N-arachidonyldopamine (NADA) promiscuously activated both CB1 and TRPV1 receptors. NADA inhibited ST-eEPSCs while simultaneously increasing sEPSC frequency, and thermally triggered sEPSC increases in neurons with TRPV1(+) afferents. We found no evidence for CB1/TRPV1 interactions suggesting independent regulation of two separate vesicle pools. Together, these data demonstrate that action potential-evoked synchronous glutamate release is modulated separately from TRPV1-mediated glutamate release despite coexistence in the same central terminations. This two-pool arrangement allows independent and opposite modulation of glutamate release by single lipid metabolites.


Asunto(s)
Ácido Glutámico/metabolismo , Receptor Cannabinoide CB1/metabolismo , Transmisión Sináptica/fisiología , Canales Catiónicos TRPV/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Analgésicos/farmacología , Animales , Ácidos Araquidónicos/farmacología , Benzoxazinas/farmacología , Tronco Encefálico/citología , Tronco Encefálico/fisiología , Capsaicina/análogos & derivados , Capsaicina/farmacología , Dopamina/análogos & derivados , Dopamina/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Calor , Técnicas In Vitro , Masculino , Morfolinas/farmacología , Naftalenos/farmacología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Piperidinas/farmacología , Pirazoles/farmacología , Ratas , Ratas Sprague-Dawley , Receptor Cannabinoide CB1/antagonistas & inhibidores , Transmisión Sináptica/efectos de los fármacos , Canales Catiónicos TRPV/antagonistas & inhibidores
19.
J Neurophysiol ; 111(11): 2222-31, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24598529

RESUMEN

Trigeminal sensory afferent fibers terminating in nucleus caudalis (Vc) relay sensory information from craniofacial regions to the brain and are known to express transient receptor potential (TRP) ion channels. TRP channels are activated by H(+), thermal, and chemical stimuli. The present study investigated the relationships among the spontaneous release of glutamate, temperature, and TRPV1 localization at synapses in the Vc. Spontaneous excitatory postsynaptic currents (sEPSCs) were recorded from Vc neurons (n = 151) in horizontal brain-stem slices obtained from Sprague-Dawley rats. Neurons had basal sEPSC rates that fell into two distinct frequency categories: High (≥10 Hz) or Low (<10 Hz) at 35°C. Of all recorded neurons, those with High basal release rates (67%) at near-physiological temperatures greatly reduced their sEPSC rate when cooled to 30°C without amplitude changes. Such responses persisted during blockade of action potentials indicating that the High rate of glutamate release arises from presynaptic thermal mechanisms. Neurons with Low basal frequencies (33%) showed minor thermal changes in sEPSC rate that were abolished after addition of TTX, suggesting these responses were indirect and required local circuits. Activation of TRPV1 with capsaicin (100 nM) increased miniature EPSC (mEPSC) frequency in 70% of neurons, but half of these neurons had Low basal mEPSC rates and no temperature sensitivity. Our evidence indicates that normal temperatures (35-37°C) drive spontaneous excitatory synaptic activity within superficial Vc by a mechanism independent of presynaptic action potentials. Thus thermally sensitive inputs on superficial Vc neurons may tonically activate these neurons without afferent stimulation.


Asunto(s)
Regulación de la Temperatura Corporal/fisiología , Ácido Glutámico/metabolismo , Células del Asta Posterior/fisiología , Transmisión Sináptica/fisiología , Canales Catiónicos TRPV/metabolismo , Sensación Térmica/fisiología , Núcleos del Trigémino/fisiología , Animales , Activación del Canal Iónico/fisiología , Masculino , Neurotransmisores/metabolismo , Ratas , Ratas Sprague-Dawley
20.
J Neurophysiol ; 109(2): 507-17, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23114206

RESUMEN

Cranial primary afferents from the viscera enter the brain at the solitary tract nucleus (NTS), where their information is integrated for homeostatic reflexes. The organization of sensory inputs is poorly understood, despite its critical impact on overall reflex performance characteristics. Single afferents from the solitary tract (ST) branch within NTS and make multiple contacts onto individual neurons. Many neurons receive more than one ST input. To assess the potential interaction between converging afferents and proximal branching near to second-order neurons, we probed near the recorded soma in horizontal slices from rats with focal electrodes and minimal shocks. Remote ST shocks evoked monosynaptic excitatory postsynaptic currents (EPSCs), and nearby focal shocks also activated monosynaptic EPSCs. We tested the timing and order of stimulation to determine whether focal shocks influenced ST responses and vice versa in single neurons. Focal-evoked EPSC response profiles closely resembled ST-EPSC characteristics. Mean synaptic jitters, failure rates, depression, and phenotypic segregation by capsaicin responsiveness were indistinguishable between focal and ST-evoked EPSCs. ST-EPSCs failed to affect focal-EPSCs within neurons, indicating that release sites and synaptic terminals were functionally independent and isolated from cross talk or neurotransmitter overflow. In only one instance, focal shocks intercepted and depleted the ST axon generating evoked EPSCs. Despite large numbers of functional contacts, multiple afferents do not appear to interact, and ST axon branches may be limited to close to the soma. Thus single or multiple primary afferents and their presynaptic active release sites act independently when they contact single second-order NTS neurons.


Asunto(s)
Potenciales Postsinápticos Excitadores , Neuronas/fisiología , Núcleo Solitario/fisiología , Vísceras/inervación , Vías Aferentes/citología , Vías Aferentes/fisiología , Animales , Ratas , Ratas Sprague-Dawley , Núcleo Solitario/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...