Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
1.
Biol Sex Differ ; 15(1): 13, 2024 Jan 31.
Article En | MEDLINE | ID: mdl-38297404

BACKGROUND: The incidence of Alzheimer's disease (AD)-the most frequent cause of dementia-is expected to increase as life expectancies rise across the globe. While sex-based differences in AD have previously been described, there remain uncertainties regarding any association between sex and disease-associated molecular mechanisms. Studying sex-specific expression profiles of regulatory factors such as microRNAs (miRNAs) could contribute to more accurate disease diagnosis and treatment. METHODS: A systematic review identified six studies of microRNA expression in AD patients that incorporated information regarding the biological sex of samples in the Gene Expression Omnibus repository. A differential microRNA expression analysis was performed, considering disease status and patient sex. Subsequently, results were integrated within a meta-analysis methodology, with a functional enrichment of meta-analysis results establishing an association between altered miRNA expression and relevant Gene Ontology terms. RESULTS: Meta-analyses of miRNA expression profiles in blood samples revealed the alteration of sixteen miRNAs in female and 22 miRNAs in male AD patients. We discovered nine miRNAs commonly overexpressed in both sexes, suggesting a shared miRNA dysregulation profile. Functional enrichment results based on miRNA profiles revealed sex-based differences in biological processes; most affected processes related to ubiquitination, regulation of different kinase activities, and apoptotic processes in males, but RNA splicing and translation in females. Meta-analyses of miRNA expression profiles in brain samples revealed the alteration of six miRNAs in female and four miRNAs in male AD patients. We observed a single underexpressed miRNA in female and male AD patients (hsa-miR-767-5p); however, the functional enrichment analysis for brain samples did not reveal any specifically affected biological process. CONCLUSIONS: Sex-specific meta-analyses supported the detection of differentially expressed miRNAs in female and male AD patients, highlighting the relevance of sex-based information in biomedical data. Further studies on miRNA regulation in AD patients should meet the criteria for comparability and standardization of information.


Alzheimer's disease (AD)­a neurodegenerative disease mainly affecting older patients­is characterized by cognitive deterioration, memory loss, and progressive incapacitation in daily activities. While AD affects almost twice as many females as males, and cognitive deterioration and brain atrophy develop more rapidly in females, the biological causes of these differences remain poorly understood. MicroRNAs (miRNAs) regulate gene expression and impact a wide variety of biological processes; therefore, studying the differential expression of miRNAs in female and male AD patients could contribute to a better understanding of the disease. We reviewed studies of miRNA expression in female and male AD patients and integrated results using a meta-analysis methodology and then identified those genes regulated by the altered miRNAs to establish an association with biological processes. We found 16 (females) and 22 (males) miRNAs altered in the blood of AD patients. Functional enrichment revealed sex-based differences in the affected altered biological processes­protein modification and degradation and cell death in male AD patients and RNA processing in female AD patients. A similar analysis in the brains of AD patients revealed six (females) and four (males) miRNAs with altered expression; however, our analysis failed to highlight any specifically altered biological processes. Overall, we highlight the sex-based differential expression of miRNAs (and biological processes affected) in the blood and brain of AD patients.


Alzheimer Disease , MicroRNAs , Humans , Male , Female , Alzheimer Disease/genetics , MicroRNAs/metabolism , Brain/metabolism
2.
NMR Biomed ; 36(11): e5004, 2023 Nov.
Article En | MEDLINE | ID: mdl-37482922

Global agreement in central nervous system (CNS) tumor classification is essential for predicting patient prognosis and determining the correct course of treatment, as well as for stratifying patients for clinical trials at international level. The last update by the World Health Organization of CNS tumor classification and grading in 2021 considered, for the first time, IDH-wildtype glioblastoma and astrocytoma IDH-mutant grade 4 as different tumors. Mutations in the genes isocitrate dehydrogenase (IDH) 1 and 2 occur early and, importantly, contribute to gliomagenesis. IDH mutation produces a metabolic reprogramming of tumor cells, thus affecting the processes of hypoxia and vascularity, resulting in a clear advantage for those patients who present with IDH-mutated astrocytomas. Despite the clinical relevance of IDH mutation, current protocols do not include full sequencing for every patient. Alternative biomarkers could be useful and complementary to obtain a more reliable classification. In this sense, magnetic resonance imaging (MRI)-perfusion biomarkers, such as relative cerebral blood volume and flow, could be useful from the moment of presurgery, without incurring additional financial costs or requiring extra effort. The main purpose of this work is to analyze the vascular and hemodynamic differences between IDH-wildtype glioblastoma and IDH-mutant astrocytoma. To achieve this, we evaluate and validate the association between dynamic susceptibility contrast-MRI perfusion biomarkers and IDH mutation status. In addition, to gain a deeper understanding of the vascular differences in astrocytomas depending on the IDH mutation, we analyze the transcriptomic bases of the vascular differences.


Astrocytoma , Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/diagnostic imaging , Glioblastoma/genetics , Glioblastoma/pathology , Transcriptome , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Astrocytoma/diagnostic imaging , Astrocytoma/genetics , Astrocytoma/metabolism , Mutation/genetics , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Biomarkers
3.
Cancers (Basel) ; 15(11)2023 May 24.
Article En | MEDLINE | ID: mdl-37296850

Pancreatic ductal adenocarcinoma (PDAC) prognoses and treatment responses remain devastatingly poor due partly to the highly heterogeneous, aggressive, and immunosuppressive nature of this tumor type. The intricate relationship between the stroma, inflammation, and immunity remains vaguely understood in the PDAC microenvironment. Here, we performed a meta-analysis of stroma-, and immune-related gene expression in the PDAC microenvironment to improve disease prognosis and therapeutic development. We selected 21 PDAC studies from the Gene Expression Omnibus and ArrayExpress databases, including 922 samples (320 controls and 602 cases). Differential gene enrichment analysis identified 1153 significant dysregulated genes in PDAC patients that contribute to a desmoplastic stroma and an immunosuppressive environment (the hallmarks of PDAC tumors). The results highlighted two gene signatures related to the immune and stromal environments that cluster PDAC patients into high- and low-risk groups, impacting patients' stratification and therapeutic decision making. Moreover, HCP5, SLFN13, IRF9, IFIT2, and IFI35 immune genes are related to the prognosis of PDAC patients for the first time.

4.
Neurobiol Dis ; 181: 106113, 2023 06 01.
Article En | MEDLINE | ID: mdl-37023829

BACKGROUND: Multiple sclerosis (MS), a chronic auto-immune, inflammatory, and degenerative disease of the central nervous system, affects both males and females; however, females suffer from a higher risk of developing MS (2-3:1 ratio relative to males). The precise sex-based factors influencing risk of MS are currently unknown. Here, we explore the role of sex in MS to identify molecular mechanisms underlying observed MS sex differences that may guide novel therapeutic approaches tailored for males or females. METHODS: We performed a rigorous and systematic review of genome-wide transcriptome studies of MS that included patient sex data in the Gene Expression Omnibus and ArrayExpress databases following PRISMA statement guidelines. For each selected study, we analyzed differential gene expression to explore the impact of the disease in females (IDF), in males (IDM) and our main goal: the sex differential impact of the disease (SDID). Then, for each scenario (IDF, IDM and SDID) we performed 2 meta-analyses in the main tissues involved in the disease (brain and blood). Finally, we performed a gene set analysis in brain tissue, in which a higher number of genes were dysregulated, to characterize sex differences in biological pathways. RESULTS: After screening 122 publications, the systematic review provided a selection of 9 studies (5 in blood and 4 in brain tissue) with a total of 474 samples (189 females with MS and 109 control females; 82 males with MS and 94 control males). Blood and brain tissue meta-analyses identified, respectively, 1 (KIR2DL3) and 13 (ARL17B, CECR7, CEP78, IFFO2, LOC401127, NUDT18, RNF10, SLC17A5, STMP1, TRAF3IP2-AS1, UBXN2B, ZNF117, ZNF488) MS-associated genes that differed between males and females (SDID comparison). Functional analyses in the brain revealed different altered immune patterns in females and males (IDF and IDM comparisons). The pro-inflammatory environment and innate immune responses related to myeloid lineage appear to be more affected in females, while adaptive responses associated with the lymphocyte lineage in males. Additionally, females with MS displayed alterations in mitochondrial respiratory chain complexes, purine, and glutamate metabolism, while MS males displayed alterations in stress response to metal ion, amine, and amino acid transport. CONCLUSION: We found transcriptomic and functional differences between MS males and MS females (especially in the immune system), which may support the development of new sex-based research of this disease. Our study highlights the importance of understanding the role of biological sex in MS to guide a more personalized medicine.


Multiple Sclerosis , Transcriptome , Humans , Male , Female , Multiple Sclerosis/genetics , Sex Characteristics , Gene Expression Profiling , Central Nervous System , Carrier Proteins , Cell Cycle Proteins
5.
Nanotheranostics ; 7(1): 1-21, 2023.
Article En | MEDLINE | ID: mdl-36593796

Targeting cancer cell exosome release and biogenesis represents a potentially efficient means to treat tumors and prevent cancer recurrence/metastasis; however, the complexity and time-consuming nature of currently employed methods to purify and characterize exosomes represent obstacles to progression. Herein, we describe a rapid, convergent, and cost-efficient strategy to analyze candidate U.S. Food and Drug Administration (FDA)-approved drugs that inhibit exosome release and/or biogenesis using breast cancer cell line models in the hope of repurposing them for the clinical treatment of metastatic tumors. We combined the ExoScreen assay based on AlphaScreenTM technology with the antibody-mediated detection of an atypical lipid (lysobisphosphatidic acid - LBPA) present in the intra-luminal vesicle/exosomal fraction to achieve both extracellular and intracellular information on exosome modulation after treatment. As proof of concept for this strategy, we identified docetaxel, biscurcumin, primaquine, and doxorubicin as potential exosome release inhibitors in the Her-2 positive MDA-MB-453 and luminal A MCF7 cell lines. Dinaciclib also functioned as an exosome release inhibitor in MCF7 cells. Further, we explored the expression of proteins involved in exosome biogenesis (TSG101, CD9 tetraspanin, Alix, SMase2) and release (Rab11, Rab27) to decipher and validate the possible molecular mechanisms of action of the identified exosome inhibitors. We anticipate that our approach could help to create robust high-throughput screening methodologies to accelerate drug repurposing when using FDA-approved compound libraries and to develop rationally-designed single/combination therapies (including nanomedicines) that can target metastasis progression by modulating exosome biogenesis or release in various tumor types.


Exosomes , Neoplasms , United States , Humans , Exosomes/metabolism , Cell Line, Tumor , MCF-7 Cells , Neoplasms/metabolism
6.
Biol Sex Differ ; 13(1): 68, 2022 11 22.
Article En | MEDLINE | ID: mdl-36414996

BACKGROUND: In recent decades, increasing longevity (among other factors) has fostered a rise in Parkinson's disease incidence. Although not exhaustively studied in this devastating disease, the impact of sex represents a critical variable in Parkinson's disease as epidemiological and clinical features differ between males and females. METHODS: To study sex bias in Parkinson's disease, we conducted a systematic review to select sex-labeled transcriptomic data from three relevant brain tissues: the frontal cortex, the striatum, and the substantia nigra. We performed differential expression analysis on each study chosen. Then we summarized the individual differential expression results with three tissue-specific meta-analyses and a global all-tissues meta-analysis. Finally, results from the meta-analysis were functionally characterized using different functional profiling approaches. RESULTS: The tissue-specific meta-analyses linked Parkinson's disease to the enhanced expression of MED31 in the female frontal cortex and the dysregulation of 237 genes in the substantia nigra. The global meta-analysis detected 15 genes with sex-differential patterns in Parkinson's disease, which participate in mitochondrial function, oxidative stress, neuronal degeneration, and cell death. Furthermore, functional analyses identified pathways, protein-protein interaction networks, and transcription factors that differed by sex. While male patients exhibited changes in oxidative stress based on metal ions, inflammation, and angiogenesis, female patients exhibited dysfunctions in mitochondrial and lysosomal activity, antigen processing and presentation functions, and glutamic and purine metabolism. All results generated during this study are readily available by accessing an open web resource ( http://bioinfo.cipf.es/metafun-pd/ ) for consultation and reuse in further studies. CONCLUSIONS: Our in silico approach has highlighted sex-based differential mechanisms in typical Parkinson Disease hallmarks (inflammation, mitochondrial dysfunction, and oxidative stress). Additionally, we have identified specific genes and transcription factors for male and female Parkinson Disease patients that represent potential candidates as biomarkers to diagnosis.


Parkinson Disease , Humans , Male , Female , Parkinson Disease/genetics , Parkinson Disease/metabolism , Transcriptome , Substantia Nigra/metabolism , Inflammation/metabolism , Transcription Factors/metabolism , Mediator Complex/genetics , Mediator Complex/metabolism
7.
J Extracell Vesicles ; 10(7): e12082, 2021 05.
Article En | MEDLINE | ID: mdl-34012515

Tetraspanins are often used as Extracellular Vesicle (EV) detection markers because of their abundance on these secreted vesicles. However, data on their function on EV biogenesis are controversial and compensatory mechanisms often occur upon gene deletion. To overcome this handicap, we have compared the effects of tetraspanin CD9 gene deletion with those elicited by cytopermeable peptides with blocking properties against tetraspanin CD9. Both CD9 peptide or gene deletion reduced the number of early endosomes. CD9 peptide induced an increase in lysosome numbers, while CD9 deletion augmented the number of MVB and EV secretion, probably because of compensatory CD63 expression upregulation. In vivo, CD9 peptide delayed primary tumour cell growth and reduced metastasis size. These effects on cell proliferation were shown to be concomitant with an impairment in mitochondrial quality control. CD9 KO cells were able to compensate the mitochondrial malfunction by increasing total mitochondrial mass reducing mitophagy. Our data thus provide the first evidence for a functional connection of tetraspanin CD9 with mitophagy in melanoma cells.


Extracellular Vesicles/metabolism , Melanoma/metabolism , Tetraspanin 29/metabolism , Cell Line , Humans , Melanoma/genetics , Mitophagy/genetics , Mitophagy/physiology , Secretory Vesicles/metabolism , Tetraspanin 29/analysis , Tetraspanin 29/antagonists & inhibitors , Tetraspanin 30/analysis , Tetraspanins/analysis , Tetraspanins/genetics , Tetraspanins/metabolism
8.
Cancers (Basel) ; 13(1)2021 Jan 05.
Article En | MEDLINE | ID: mdl-33526761

While studies have established the existence of differences in the epidemiological and clinical patterns of lung adenocarcinoma between male and female patients, we know relatively little regarding the molecular mechanisms underlying such sex-based differences. In this study, we explore said differences through a meta-analysis of transcriptomic data. We performed a meta-analysis of the functional profiling of nine public datasets that included 1366 samples from Gene Expression Omnibus and The Cancer Genome Atlas databases. Meta-analysis results from data merged, normalized, and corrected for batch effect show an enrichment for Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways related to the immune response, nucleic acid metabolism, and purinergic signaling. We discovered the overrepresentation of terms associated with the immune response, particularly with the acute inflammatory response, and purinergic signaling in female lung adenocarcinoma patients, which could influence reported clinical differences. Further evaluations of the identified differential biological processes and pathways could lead to the discovery of new biomarkers and therapeutic targets. Our findings also emphasize the relevance of sex-specific analyses in biomedicine, which represents a crucial aspect influencing biological variability in disease.

9.
Sci Rep ; 8(1): 9241, 2018 06 18.
Article En | MEDLINE | ID: mdl-29915186

Neuronal production from neural stem cells persists during adulthood in the subgranular zone of the hippocampal dentate gyrus. Extracellular signals provided by the hippocampal microenvironment regulate the neuronal fate commitment of the stem cell progeny. To date, the identity of those signals and their crosstalk has been only partially resolved. Here we show that adult rat hippocampal neural stem and progenitor cells (AH-NSPCs) express receptors for bone morphogenetic proteins (BMPs) and that the BMP/P-Smad pathway is active in AH-NSPCs undergoing differentiation towards the neuronal lineage. In vitro, exposure to the BMP2 and BMP4 ligands is sufficient to increase neurogenesis from AH-NSPCs in a WNT dependent manner while decreasing oligodendrogenesis. Moreover, BMP2/4 and WNT3A, a key regulator of adult hippocampal neurogenesis, cooperate to further enhance neuronal production. Our data point to a mechanistic convergence of the BMP and WNT pathways at the level of the T-cell factor/lymphoid enhancer factor gene Lef1. Altogether, we provide evidence that BMP signalling is an important regulator for the neuronal fate specification of AH-NSPCs cultures and we show that it significantly cooperates with the previously described master regulator of adult hippocampal neurogenesis, the WNT signalling pathway.


Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein 4/metabolism , Hippocampus/metabolism , Lymphoid Enhancer-Binding Factor 1/metabolism , Neural Stem Cells/metabolism , Neurons/metabolism , Wnt Proteins/metabolism , Wnt Signaling Pathway/physiology , Animals , Cell Differentiation/physiology , Dentate Gyrus/metabolism , Mice , Neurogenesis/physiology , Rats , TCF Transcription Factors/metabolism
10.
J Pers Med ; 8(1)2018 Jan 23.
Article En | MEDLINE | ID: mdl-29360800

Polymer therapeutics (PTs) provides a potentially exciting approach for the treatment of many diseases by enhancing aqueous solubility and altering drug pharmacokinetics at both the whole organism and subcellular level leading to improved therapeutic outcomes. However, the failure of many polymer-drug conjugates in clinical trials suggests that we may need to stratify patients in order to match each patient to the right PT. In this concise review, we hope to assess potential PT-specific biomarkers for cancer treatment, with a focus on new studies, detection methods, new models and the opportunities this knowledge will bring for the development of novel PT-based anti-cancer strategies. We discuss the various "hurdles" that a given PT faces on its passage from the syringe to the tumor (and beyond), including the passage through the bloodstream, tumor targeting, tumor uptake and the intracellular release of the active agent. However, we also discuss other relevant concepts and new considerations in the field, which we hope will provide new insight into the possible applications of PT-related biomarkers.

11.
Eur J Pharm Sci ; 98: 70-79, 2017 Feb 15.
Article En | MEDLINE | ID: mdl-27751843

Bladder cancer is the second most frequent malignancy of the urinary tract after prostate cancer. Current diagnostic techniques, such as cystoscopy and biopsies are highly invasive and accompanied of undesirable side effects. Moreover, there are no suitable biomarkers for relapse or progression prognosis. We analysed whether the specific composition of microRNAs (miRNAs) and proteins of extracellular vesicles (EVs) that urothelial tumour cells of bladder mucosa release into the urine, could reflect their pathologic condition. For this purpose, urinary EVs were isolated and their protein and miRNA composition evaluated in healthy donors and low or high-grade bladder cancer patients. Using a microarray platform containing probes for 851 human miRNAs we found 26 deregulated miRNAs in high-grade bladder cancer urine EVs, from which 23 were downregulated and 3 upregulated. Real-time PCR analysis pointed to miR-375 as a biomarker for high-grade bladder cancer while miR-146a could identify low-grade patients. Finally, several protein markers were also deregulated in EVs from tumour patients. Our data suggest that the presence of ApoB in the 100,000 pellet is a clear marker for malignancy.


Apolipoprotein B-100/urine , Biomarkers, Tumor/urine , Extracellular Vesicles/metabolism , MicroRNAs/urine , Urinary Bladder Neoplasms/urine , Adult , Aged , Aged, 80 and over , Cell Line, Tumor , Disease Progression , Female , Humans , Male , Middle Aged
12.
J Extracell Vesicles ; 5: 31655, 2016.
Article En | MEDLINE | ID: mdl-27330048

Extracellular vesicles (EVs) are emerging as potent non-invasive biomarkers. However, current methodologies are time consuming and difficult to translate to clinical practice. To analyse EV-encapsulated circulating miRNA, we searched for a quick, easy and economic method to enrich frozen human serum samples for EV. We compared the efficiency of several protocols and commercial kits to isolate EVs. Different methods based on precipitation, columns or filter systems were tested and compared with ultracentrifugation, which is the most classical protocol to isolate EVs. EV samples were assessed for purity and quantity by nanoparticle tracking analysis and western blot or cytometry against major EV protein markers. For biomarker validation, levels of a set of miRNAs were determined in EV fractions and compared with their levels in total serum. EVs isolated with precipitation-based methods were enriched for a subgroup of miRNAs that corresponded to miRNAs described to be encapsulated into EVs (miR-126, miR-30c and miR-143), while the detection of miR-21, miR-16-5p and miR-19a was very low compared with total serum. Our results point to precipitation using polyethylene glycol (PEG) as a suitable method for an easy and cheap enrichment of serum EVs for miRNA analyses. The overall performance of PEG was very similar, or better than other commercial precipitating reagents, in both protein and miRNA yield, but in comparison to them PEG is much cheaper. Other methods presented poorer results, mostly when assessing miRNA by qPCR analyses. Using PEG precipitation in a longitudinal study with human samples, we demonstrated that miRNA could be assessed in frozen samples up to 8 years of storage. We report a method based on a cut-off value of mean of fold EV detection versus serum that provides an estimate of the degree of encapsulation of a given miRNA.

13.
J Extracell Vesicles ; 4: 27066, 2015.
Article En | MEDLINE | ID: mdl-25979354

In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored. Here, we provide a comprehensive overview of the current understanding of the physiological roles of EVs, which has been written by crowd-sourcing, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia. This review is intended to be of relevance to both researchers already working on EV biology and to newcomers who will encounter this universal cell biological system. Therefore, here we address the molecular contents and functions of EVs in various tissues and body fluids from cell systems to organs. We also review the physiological mechanisms of EVs in bacteria, lower eukaryotes and plants to highlight the functional uniformity of this emerging communication system.

14.
Stem Cells ; 33(1): 219-29, 2015 Jan.
Article En | MEDLINE | ID: mdl-25185890

Members of the cyclin-dependent kinase (CDK)-inhibitory protein (CIP)/kinase-inhibitory protein (KIP) family of cyclin-dependent kinase inhibitors regulate proliferation and cell cycle exit of mammalian cells. In the adult brain, the CIP/KIP protein p27(kip1) has been related to the regulation of intermediate progenitor cells located in neurogenic niches. Here, we uncover a novel function of p27(kip1) in the adult hippocampus as a dual regulator of stem cell quiescence and of cell-cycle exit of immature neurons. In vivo, p27(kip1) is detected in radial stem cells expressing SOX2 and in newborn neurons of the dentate gyrus. In vitro, the Cdkn1b gene encoding p27(kip1) is transcriptionally upregulated by quiescence signals such as BMP4. The nuclear accumulation of p27(kip1) protein in adult hippocampal stem cells encompasses the BMP4-induced quiescent state and its overexpression is able to block proliferation. p27(kip1) is also expressed in immature neurons upon differentiation of adult hippocampal stem cell cultures. Loss of p27(kip1) leads to an increase in proliferation and neurogenesis in the adult dentate gyrus, which results from both a decrease in the percentage of radial stem cells that are quiescent and a delay in cell cycle exit of immature neurons. Analysis of animals carrying a disruption in the cyclin-CDK interaction domain of p27(kip1) indicates that the CDK inhibitory function of the protein is necessary to control the activity of radial stem cells. Thus, we report that p27(kip1) acts as a central player of the molecular program that keeps adult hippocampal stem cells out of the cell cycle.


Cyclin-Dependent Kinase Inhibitor p27/metabolism , Hippocampus/cytology , Neural Stem Cells/cytology , Neurogenesis/physiology , Animals , Apoptosis/physiology , Cell Differentiation/physiology , Cells, Cultured , Cyclin-Dependent Kinase Inhibitor p27/biosynthesis , Cyclin-Dependent Kinase Inhibitor p27/genetics , Hippocampus/metabolism , Humans , Mice , Mice, Knockout , Neural Stem Cells/metabolism
15.
Front Immunol ; 5: 442, 2014.
Article En | MEDLINE | ID: mdl-25278937

Extracellular vesicles (EVs) represent a novel mechanism of intercellular communication as vehicles for intercellular transfer of functional membrane and cytosolic proteins, lipids, and RNAs. Microvesicles, ectosomes, shedding vesicles, microparticles, and exosomes are the most common terms to refer to the different kinds of EVs based on their origin, composition, size, and density. Exosomes have an endosomal origin and are released by many different cell types, participating in different physiological and/or pathological processes. Depending on their origin, they can alter the fate of recipient cells according to the information transferred. In the last two decades, EVs have become the focus of many studies because of their putative use as non-invasive biomarkers and their potential in bioengineering and clinical applications. In order to exploit this ability of EVs many aspects of their biology should be deciphered. Here, we review the mechanisms involved in EV biogenesis, assembly, recruitment of selected proteins, and genetic material as well as the uptake mechanisms by target cells in an effort to understand EV functions and their utility in clinical applications. In these contexts, the role of proteins from the tetraspanin superfamily, which are among the most abundant membrane proteins of EVs, will be highlighted.

16.
Am J Pathol ; 182(6): 2368-79, 2013 Jun.
Article En | MEDLINE | ID: mdl-23583652

Brain metastases occur in more than one-third of metastatic breast cancer patients whose tumors overexpress HER2 or are triple negative. Brain colonization of cancer cells occurs in a unique environment, containing microglia, oligodendrocytes, astrocytes, and neurons. Although a neuroinflammatory response has been documented in brain metastasis, its contribution to cancer progression and therapy remains poorly understood. Using an experimental brain metastasis model, we characterized the brain metastatic microenvironment of brain tropic, HER2-transfected MDA-MB-231 human breast carcinoma cells (231-BR-HER2). A previously unidentified subpopulation of metastasis-associated astrocytes expressing phosphorylated platelet-derived growth factor receptor ß (at tyrosine 751; p751-PDGFRß) was identified around perivascular brain micrometastases. p751-PDGFRß(+) astrocytes were also identified in human brain metastases from eight craniotomy specimens and in primary cultures of astrocyte-enriched glial cells. Previously, we reported that pazopanib, a multispecific tyrosine kinase inhibitor, prevented the outgrowth of 231-BR-HER2 large brain metastases by 73%. Here, we evaluated the effect of pazopanib on the brain neuroinflammatory microenvironment. Pazopanib treatment resulted in 70% (P = 0.023) decrease of the p751-PDGFRß(+) astrocyte population, at the lowest dose of 30 mg/kg, twice daily. Collectively, the data identify a subpopulation of activated astrocytes in the subclinical perivascular stage of brain metastases and show that they are inhibitable by pazopanib, suggesting its potential to prevent the development of brain micrometastases in breast cancer patients.


Antineoplastic Agents/pharmacology , Astrocytes/drug effects , Brain Neoplasms/secondary , Breast Neoplasms/metabolism , Pyrimidines/pharmacology , Receptor, Platelet-Derived Growth Factor beta/metabolism , Sulfonamides/pharmacology , Animals , Antineoplastic Agents/therapeutic use , Astrocytes/metabolism , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/prevention & control , Breast Neoplasms/pathology , Drug Evaluation, Preclinical/methods , Female , Humans , Indazoles , Mice , Neoplasm Micrometastasis/pathology , Neoplasm Proteins/metabolism , Neoplasm Transplantation , Neuroglia/drug effects , Neuroglia/metabolism , Phosphorylation/drug effects , Pyrimidines/therapeutic use , Receptor, Platelet-Derived Growth Factor beta/antagonists & inhibitors , Sulfonamides/therapeutic use , Tumor Cells, Cultured , Tumor Microenvironment
17.
Curr Protoc Stem Cell Biol ; Chapter 2: Unit 2D.10, 2012 May.
Article En | MEDLINE | ID: mdl-22605645

The factors that regulate the switch from adult neural stem cell (aNSC) quiescence to active proliferation are poorly understood. Here we describe a method to study the in vivo effect of a soluble factor on cell cycle entry and proliferation of aNSCs located in the brain neurogenic niches. First, we provide information for implanting osmotic minipumps that will deliver the compound of interest directly into the mouse brain. When combined with the administration of the thymidine analog bromodeoxyuridine (BrdU), this technique is the most basic procedure to study the effects of a soluble factor on aNSC proliferation. We also describe a dual replication labeling protocol using two different halogenated thymidine analogs, chloro- and iododeoxyuridine (CldU and IdU), that allows tracking of proliferating cells and assessing cell cycle re-entry of aNSCs at different time points.


Adult Stem Cells/drug effects , Cell Division/drug effects , Halogenation/drug effects , Intercellular Signaling Peptides and Proteins/administration & dosage , Intercellular Signaling Peptides and Proteins/pharmacology , Neural Stem Cells/drug effects , Thymidine/analogs & derivatives , Thymidine/pharmacology , Adult Stem Cells/cytology , Adult Stem Cells/metabolism , Animals , Brain/cytology , Brain/drug effects , Cell Proliferation/drug effects , Infusions, Intraventricular , Male , Mice , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Solubility/drug effects , Staining and Labeling , Thymidine/administration & dosage , Time Factors
18.
Cell Stem Cell ; 7(1): 78-89, 2010 Jul 02.
Article En | MEDLINE | ID: mdl-20621052

Neural stem cells (NSCs) in the adult hippocampus divide infrequently, and the molecules that modulate their quiescence are largely unknown. Here, we show that bone morphogenetic protein (BMP) signaling is active in hippocampal NSCs, downstream of BMPR-IA. BMPs reversibly diminish proliferation of cultured NSCs while maintaining their undifferentiated state. In vivo, acute blockade of BMP signaling in the hippocampus by intracerebral infusion of Noggin first recruits quiescent NSCs into the cycle and increases neurogenesis; subsequently, it leads to decreased stem cell division and depletion of precursors and newborn neurons. Consistently, selective ablation of Bmpr1a in hippocampal NSCs, or inactivation of BMP canonical signaling in conditional Smad4 knockout mice, transiently enhances proliferation but later leads to a reduced number of precursors, thereby limiting neuronal birth. BMPs are therefore required to balance NSC quiescence/proliferation and to prevent loss of the stem cell activity that supports continuous neurogenesis in the mature hippocampus.


Bone Morphogenetic Protein Receptors, Type I/metabolism , Hippocampus/cytology , Neurons/cytology , Neurons/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Animals , Bone Morphogenetic Protein Receptors, Type I/agonists , Bone Morphogenetic Protein Receptors, Type I/genetics , Carrier Proteins/pharmacology , Cell Cycle/genetics , Cell Cycle/physiology , Cell Line , Cells, Cultured , Flow Cytometry , Genetic Vectors , Humans , Lentivirus , Mice , Models, Biological , Neurons/drug effects , Rats , Rats, Inbred F344 , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects , Signal Transduction/genetics , Smad4 Protein/genetics , Smad4 Protein/metabolism , Stem Cells/drug effects
...