Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
Int Immunopharmacol ; 134: 112100, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38728877

RESUMEN

The parasite Leishmania resides as amastigotes within the macrophage parasitophorous vacuoles inflicting the disease Leishmaniasis. Leishmania selectively modulates mitogen-activated protein kinase (MAPK) phosphorylation subverting CD40-triggered anti-leishmanial functions of macrophages. The mechanism of any pathogen-derived molecule induced host MAPK modulation remains poorly understood. Herein, we show that of the fifteen MAPKs, LmjMAPK4 expression is higher in virulent L. major. LmjMAPK4- detected in parasitophorous vacuoles and cytoplasm- binds MEK-1/2, but not MKK-3/6. Lentivirally-overexpressed LmjMAPK4 augments CD40-activated MEK-1/2-ERK-1/2-MKP-1, but inhibits MKK3/6-p38MAPK-MKP-3, phosphorylation. A rationally-identified LmjMAPK4 inhibitor reinstates CD40-activated host-protective anti-leishmanial functions in L. major-infected susceptible BALB/c mice. These results identify LmjMAPK4 as a MAPK modulator at the host-pathogen interface and establish a pathogen-intercepted host receptor signaling as a scientific rationale for identifying drug targets.


Asunto(s)
Antígenos CD40 , Leishmania major , Leishmaniasis Cutánea , Macrófagos , Ratones Endogámicos BALB C , Transducción de Señal , Animales , Leishmania major/inmunología , Leishmania major/fisiología , Antígenos CD40/metabolismo , Ratones , Leishmaniasis Cutánea/inmunología , Leishmaniasis Cutánea/parasitología , Macrófagos/inmunología , Macrófagos/parasitología , Humanos , Femenino , Fosforilación , Interacciones Huésped-Parásitos/inmunología , Sistema de Señalización de MAP Quinasas/inmunología
2.
Dalton Trans ; 53(18): 7866-7879, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38632950

RESUMEN

Rhenium(I) tricarbonyl complexes are widely studied for their cell imaging properties and anti-cancer and anti-microbial activities, but the complexes with S-donor ligands remain relatively unexplored. A series of six fac-[Re(NN)(CO)3(SR)] complexes, where (NN) is 2,2'-bipyridyl (bipy) or 1,10-phenanthroline (phen), and RSH is a series of thiocarboxylic acid methyl esters, have been synthesized and characterized. Cellular uptake and anti-proliferative activities of these complexes in human breast cancer cell lines (MDA-MB-231 and MCF-7) were generally lower than those of the previously described fac-[Re(NN)(CO)3(OH2)]+ complexes; however, one of the complexes, fac-[Re(CO)3(phen)(SC(Ph)CH2C(O)OMe)] (3b), was active (IC50 ∼ 10 µM at 72 h treatment) in thiol-depleted MDA-MB-231 cells. Moreover, unlike fac-[Re(CO)3(phen)(OH2)]+, this complex did not lose activity in the presence of extracellular glutathione. Taken together these properties show promise for further development of 3b and its analogues as potential anti-cancer drugs for co-treatment with thiol-depleting agents. Conversely, the stable and non-toxic complex, fac-[Re(bipy)(CO)3(SC(Me)C(O)OMe)] (1a), predominantly localized in the lysosomes of MDA-MB-231 cells, as shown by live cell confocal microscopy (λex = 405 nm, λem = 470-570 nm). It is strongly localized in a subset of lysosomes (25 µM Re, 4 h treatment), as shown by co-localization with a Lysotracker dye. Longer treatment times with 1a (25 µM Re for 48 h) resulted in partial migration of the probe into the mitochondria, as shown by co-localization with a Mitotracker dye. These properties make complex 1a an attractive target for further development as an organelle probe for multimodal imaging, including phosphorescence, carbonyl tag for vibrational spectroscopy, and Re tag for X-ray fluorescence microscopy.


Asunto(s)
Antineoplásicos , Proliferación Celular , Complejos de Coordinación , Renio , Azufre , Humanos , Renio/química , Renio/farmacología , Proliferación Celular/efectos de los fármacos , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Ligandos , Azufre/química , Azufre/farmacología , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Estructura Molecular
3.
Chempluschem ; 89(6): e202300759, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38263504

RESUMEN

This study proposes an innovative strategy to enhance the pharmacophore model of antimicrobial bismuth thiolato complex drugs by substituting hydrocarbon ligand structures with boron clusters, particularly icosahedral closo-dicarbadodecaborane (C2B10H12, carboranes). The hetero- and homoleptic mercaptocarborane complexes BiPh2L (1) and BiL3 (2) (L=9-S-1,2-C2B10H11) were prepared from 9-mercaptocarborane (HL) and triphenylbismuth. Comprehensive characterization using NMR, IR, MS, and XRD techniques confirmed their successful synthesis. Evaluation of antimicrobial activity in a liquid broth microdilution assay demonstrated micromolar to submicromolar minimum inhibitory concentrations (MIC) suggesting high effectiveness against S. aureus and limited efficacy against E. coli. This study highlights the potential of boron-containing bismuth complexes as promising antimicrobial agents, especially targeting Gram-positive bacteria, thus contributing to the advancement of novel therapeutic approaches.


Asunto(s)
Antibacterianos , Bismuto , Escherichia coli , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus , Bismuto/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Diseño de Fármacos , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/síntesis química , Boranos/química , Boranos/farmacología , Compuestos de Sulfhidrilo/química , Estructura Molecular , Relación Estructura-Actividad , Compuestos de Boro/química , Compuestos de Boro/farmacología , Humanos
4.
J Proteome Res ; 23(1): 71-83, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38112105

RESUMEN

Tyrosine sulfation in the Golgi of secreted and membrane proteins is an important post-translational modification (PTM). However, its labile nature has limited analysis by mass spectrometry (MS), a major reason why no sulfoproteome studies have been previously reported. Here, we show that a phosphoproteomics experimental workflow, which includes serial enrichment followed by high resolution, high mass accuracy MS, and tandem MS (MS/MS) analysis, enables sulfopeptide coenrichment and identification via accurate precursor ion mass shift open MSFragger database search. This approach, supported by manual validation, allows the confident identification of sulfotyrosine-containing peptides in the presence of high levels of phosphorylated peptides, thus enabling these two sterically and ionically similar isobaric PTMs to be distinguished and annotated in a single proteomic analysis. We applied this approach to isolated interphase and mitotic rat liver Golgi membranes and identified 67 tyrosine sulfopeptides, corresponding to 26 different proteins. This work discovered 23 new sulfoproteins with functions related to, for example, Ca2+-binding, glycan biosynthesis, and exocytosis. In addition, we report the first preliminary evidence for crosstalk between sulfation and phosphorylation in the Golgi, with implications for functional control.


Asunto(s)
Proteómica , Espectrometría de Masas en Tándem , Secuencia de Aminoácidos , Espectrometría de Masas en Tándem/métodos , Flujo de Trabajo , Péptidos/química , Tirosina/metabolismo , Procesamiento Proteico-Postraduccional
5.
Dalton Trans ; 52(43): 15848-15858, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37828871

RESUMEN

Six (G1-G6) novel organogallium complexes of the general formula [Ga(R)2quin] (where R = Et, iPr, nBu, tBu, sBu and hexyl; quin = quinolin-8-olate, C9H6NO) have been synthesised and fully characterised. Single crystal X-ray diffraction shows the complexes adopt a five-coordinate geometry through dimerisation. Complexes G1-G5 were analytically pure and could undergo further biological analysis. [Ga(hex)2quin] G6 could not be satisfactorily purified and was excluded from biological assays. 1H NMR spectroscopy indicated the complexes are stable to hydrolysis over 24 hours in 'wet' d6-DMSO. Complexes G1-G5 were assessed for their anti-leishmanial activity towards three separate strains: L. major, L. amazonensis and L. donovani, with varied results toward the promastigote form. G1 and G2 were found to be the most selective with little to no toxicity towards mammalian cell lines. Amastigote invasion assays on the three strains showed that [Ga(nBu)2quin] G3 and [Ga(tBu)2quin] G4 gave the best all round anti-parasitic activity with percentage infection ranges of 1.50-3.00% and 3.25-7.50% respectively, with G3 out-performing the drug control amphotericin B in all three assays. The activity was found to correlate with lipophilicity and water solubility, with the most effective G3 proving the most lipophilic and least water soluble.


Asunto(s)
Galio , Leishmania , Animales , Galio/química , Cristalografía por Rayos X , Línea Celular , Agua , Mamíferos
6.
J Inorg Biochem ; 249: 112371, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37738699

RESUMEN

A series of dimethylgallium quinolinolate [GaMe2L] (L = 5-chloroquinolinolate, 5, 7-dichloroquinolinolate, 5, 7-dibromoquinolinolate or 5, 7-doiodoquinolinolate) complexes, shown previously to be active toward the Leishmania parasite, have been studied for their antibacterial activity toward a reference and drug resistant strain of Klebsiella pneumoniae (KP). The assays were conducted in standard iron-rich LB media and in the iron depleted RPMI and RPMI-HS media to better understand the effect of Fe concentration on the activity of the Ga complexes. In LB broth the parent quinolinols and the gallium complexes were inactive up to the highest concentration tested, 100 µM. In the more physiologically relevant 'iron-poor' RPMI-HS media the quinolonols remained inactive, however, the gallium complexes showed exceptional activity in the range 48-195 nM. Only in RPMI without any added HS did both the quinolinols and the gallium complexes show good activity. The significant differences in activity across the various media types suggest that the unnaturally high iron content of conventional LB media may provide false negative results for potentially potent Ga therapeutics. A protein binding assay on the organometallic gallium complexes showed a much slower uptake of Ga by Fe-binding proteins than is typically observed for gallium salts. This indicates that their greater lipophilicity and greater hydrolytic stability could account for their increased biological activity in RPMI-HS media.


Asunto(s)
Galio , Hidroxiquinolinas , Galio/farmacología , Galio/química , Klebsiella pneumoniae , Antibacterianos/farmacología , Antibacterianos/química , Hierro/metabolismo , Hidroxiquinolinas/farmacología
7.
Chem Commun (Camb) ; 59(74): 11093-11096, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37642496

RESUMEN

Herein, we report on a series of homoleptic [GaL3] and heteroleptic organometallic [GaMe2L] complexes of inactive quinolone antibiotics; nalidixic acid, oxolinic acid and norfloxacin with their antibacterial activity (MIC 0.024-0.781 µM) towards four multi-drug resistant strains of Klebsiella pneumoniae through complexation to gallium.


Asunto(s)
Galio , Klebsiella pneumoniae , Galio/farmacología , Antibacterianos/farmacología , Norfloxacino
8.
Dalton Trans ; 52(15): 4835-4848, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-36939381

RESUMEN

Twelve Re(I) tricarbonyl diimine (2,2'-bipyridine and 1,10-phenanthroline) complexes with thiotetrazolato ligands have been synthesised and fully characterised. Structural characterisation revealed the capacity of the tetrazolato ligand to bind to the Re(I) centre through either the S atom or the N atom with crystallography revealing most complexes being bound to the N atom. However, an example where the Re(I) centre is linked via the S atom has been identified. In solution, the complexes exist as an equilibrating mixture of linkage isomers, as suggested by comparison of their NMR spectra at room temperature and 373 K, as well as 2D exchange spectroscopy. The complexes are photoluminescent in fluid solution at room temperature, with emission either at 625 or 640 nm from the metal-to-ligand charge transfer excited states of triplet multiplicity, which seems to be exclusively dependent on the nature of the diimine ligand. The oxygen-sensitive excited state lifetime decay ranges between 12.5 and 27.5 ns for the complexes bound to 2,2'-bipyrdine, or between 130.6 and 155.2 ns for those bound to 1.10-phenanthroline. Quantum yields were measured within 0.4 and 1.5%. The complexes were incubated with human lung (A549), brain (T98g), and breast (MDA-MB-231) cancer cells, as well as with normal human skin fibroblasts (HFF-1), revealing low to moderate cytotoxicity, which for some compounds exceeded that of a standard anti-cancer drug, cisplatin. Low cytotoxicity combined with significant cellular uptake and photoluminescence properties provides potential for their use as cellular imaging agents. Furthermore, the complexes were assessed in disc diffusion and broth microdilution assays against methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), Escherichia coli (E. coli), and Pseudomonas aeruginosa (P. aeruginosa) bacterial strains, which revealed negligible antibacterial activity in the dark or after irradiation.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Staphylococcus aureus Resistente a Meticilina , Humanos , Antineoplásicos/química , Complejos de Coordinación/química , Escherichia coli , Ligandos , Renio
9.
Anal Chem ; 95(8): 3986-3995, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36787387

RESUMEN

The prevalence of neglected tropical diseases (NTDs) is advancing at an alarming rate. The NTD leishmaniasis is now endemic in over 90 tropical and sub-tropical low socioeconomic countries. Current diagnosis for this disease involves serological assessment of infected tissue by either light microscopy, antibody tests, or culturing with in vitro or in vivo animal inoculation. Furthermore, co-infection by other pathogens can make it difficult to accurately determine Leishmania infection with light microscopy. Herein, for the first time, we demonstrate the potential of combining synchrotron Fourier-transform infrared (FTIR) microspectroscopy with powerful discrimination tools, such as partial least squares-discriminant analysis (PLS-DA), support vector machine-discriminant analysis (SVM-DA), and k-nearest neighbors (KNN), to characterize the parasitic forms of Leishmania major both isolated and within infected macrophages. For measurements performed on functional infected and uninfected macrophages in physiological solutions, the sensitivities from PLS-DA, SVM-DA, and KNN classification methods were found to be 0.923, 0.981, and 0.989, while the specificities were 0.897, 1.00, and 0.975, respectively. Cross-validated PLS-DA models on live amastigotes and promastigotes showed a sensitivity and specificity of 0.98 in the lipid region, while a specificity and sensitivity of 1.00 was achieved in the fingerprint region. The study demonstrates the potential of the FTIR technique to identify unique diagnostic bands and utilize them to generate machine learning models to predict Leishmania infection. For the first time, we examine the potential of infrared spectroscopy to study the molecular structure of parasitic forms in their native aqueous functional state, laying the groundwork for future clinical studies using more portable devices.


Asunto(s)
Leishmania major , Leishmaniasis , Animales , Sincrotrones , Espectrofotometría Infrarroja , Leishmaniasis/diagnóstico , Macrófagos/parasitología
10.
Cell Rep ; 41(8): 111679, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36417860

RESUMEN

N-glycans are processed mainly in the Golgi, and a well-organized Golgi structure is required for accurate glycosylation. However, during mitosis the Golgi undergoes severe fragmentation. The resulting trafficking block leads to an extended exposure of cargo molecules to Golgi enzymes. It is unclear how cells avoid glycosylation defects during mitosis. In this study, we report that Golgi α-1,2-mannosidase IA (MAN1A1), the first enzyme that cargo proteins encounter once arriving the Golgi, is phosphorylated at serine 12 by CDK1 in mitosis, which attenuates its activity, affects the production of glycan isomers, and reduces its interaction with the subsequent glycosyltransferase, MGAT1. Expression of wild-type MAN1A1, but not its phosphomimetic mutant, rescues the glycosylation defects in mannosidase I-deficient cells, whereas expression of its phosphorylation-deficient mutant in mitosis increases the formation of complex glycans. Our study reveals that glycosylation is regulated by cytosolic signaling during the cell cycle.


Asunto(s)
Aparato de Golgi , Manosidasas , Fosforilación , Manosidasas/metabolismo , Aparato de Golgi/metabolismo , Mitosis , Polisacáridos/metabolismo
11.
Dalton Trans ; 51(24): 9323-9335, 2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35670553

RESUMEN

To study and evaluate the structure-activity relationships in di-aryl bismuth phosphinates on antibacterial activity and cytotoxicity a series of complexes containing ortho-methoxyphenyl, meta-methoxyphenyl, meta-tolyl and para-tolyl aryl groups; [Bi(o-MeOPh)2(O(O)P(H)Ph)]n1, [Bi(o-MeOPh)2(O(O)PPh2)]n2, [Bi(o-MeOPh)2(O(O)P(p-MeOPh)2)]n3, [Bi(m-MeOPh)2(O(O)P(H)Ph)]n4, [Bi(m-MeOPh)2(O(O)PPh2)]n5, [Bi(m-MeOPh)2(O(O)P(p-MeOPh)2)]n6, [Bi(m-tol)2(O(O)P(H)Ph)]n7, [Bi(m-tol)2(O(O)PPh2)]n8, [Bi(m-tol)2(O(O)P(p-MeOPh)2)]n9, [Bi(p-tol)2(O(O)P(H)Ph)]n10, [Bi(p-tol)2(O(O)PPh2)]n11 and [Bi(p-tol)2(O(O)P(p-MeOPh)2)]n12, were synthesised and characterised. Complexes 4, 7, 8, 10 and 11 were structurally authenticated by X-ray crystallography. Evaluation of their antibacterial activity towards methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa) showed that the bismuth bound aryl group has a profound influence on activity, with the o-MeOPh complexes 1-3 showing very little activity while the m-MeOPh complexes have the greatest activity towards MRSA and VRE in the range of 0.63 to 1.25 µM. Viability studies with Cos-7 cells showed that the di-aryl bismuth complexes 1-12 are less cytotoxic than their di-phenyl bismuth analogues, with a general trend of toxicity observed as p-tolyl > m-tolyl > m-methoxyphenyl > o-methoxyphenyl. The large difference in Cos-7 viability for complexes 1 (IC50 > 80 µM) and 4 (IC50 14.0 µM) was further investigated through bismuth uptake studies, where there was no obvious difference in Cos-7 bismuth uptake at 5 µM. This suggests that the bismuth-bound aryl group has a significant impact on biological activity, which is then further mediated by other ligands.


Asunto(s)
Bismuto , Staphylococcus aureus Resistente a Meticilina , Fosfatos/química , Antibacterianos/química , Antibacterianos/farmacología , Argón , Bismuto/química , Bismuto/farmacología , Escherichia coli , Pseudomonas aeruginosa , Relación Estructura-Actividad
12.
J Inorg Biochem ; 234: 111864, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35636013

RESUMEN

Eight tetra-arylantimony carboxylates of the general formula Ar4SbOC(O)R with Ar = Ph (a), p-Tol (b), R = C6F5 (1), CH2CF3 (2), CF2Br (3), CF2CF2CF3 (4) have been synthesised and characterised. Two of them (2b, 3b) are structurally novel. All structures were analytically characterised by FT-IR, 1H, 13C NMR spectroscopy. Previously synthesised structures were also analysed by X-ray diffraction and their solid-state structures authenticated. The solid-state structures exhibited a typical trigonal-bipyramidal geometry at the antimony centre, with the carboxylic oxygen and one of the aryl group carbons occupying axial positions with the remaining three aryl groups in the equatorial plane. All complexes were screened for their anti-leishmanial activity and cytotoxicity towards mammalian macrophages. No anti-leishmanial testing on tetra-arylantimony carboxylates have been previously performed. It was observed that the tetra-phenylantimony analogues are far more effective in comparison to the tetra-(p-tolyl)antimony complexes, with IC50 values in the ranges of 2.90-7.75 µM and 64.97-124.71 µM, respectively, for the promastigote assay, and 70.87-76.28 µM, 9.08-10.18 µM for the macrophages. Interestingly, the dose-response curve for tetra-phenylantimony carboxylates is a standard sigmoid curve, while for all tetra-(p-tolyl)antimony complexes it has an unusual inverted U-shape, indicating they are effective only at a low dose. All tetra-phenylantimony carboxylates were assessed for their anti-amastigote activity and showed promising results: 1.00% ± 1.44 (1a), 5,25% ± 1.72 (2a), 20.75% ± 8.46 (3a), 5.75% ± 1.62 (4a) at 10 µM.


Asunto(s)
Leishmania major , Animales , Antimonio/química , Antimonio/farmacología , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacología , Mamíferos , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
13.
Chem Soc Rev ; 50(21): 12037-12069, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34533144

RESUMEN

Bismuth as a relatively non-toxic and inexpensive metal with exceptional properties has numerous biomedical applications. Bismuth-based compounds are used extensively as medicines for the treatment of gastrointestinal disorders including dyspepsia, gastric ulcers and H. pylori infections. Recently, its medicinal application was further extended to potential treatments of viral infection, multidrug resistant microbial infections, cancer and also imaging, drug delivery and biosensing. In this review we have highlighted the unique chemistry and biological chemistry of bismuth-209 as a prelude to sections covering the unique antibacterial activity of bismuth including a description of research undertaken to date to elucidate key molecular mechanisms of action against H. pylori, the development of novel compounds to treat infection from microbes beyond H. pylori and the significant role bismuth compounds can play as resistance breakers. Furthermore we have provided an account of the potential therapeutic application of bismuth-213 in targeted alpha therapy as well as a summary of the biomedical applications of bismuth-based nanoparticles and composites. Ultimately this review aims to provide the state of the art, highlight the untapped biomedical potential of bismuth and encourage original contributions to this exciting and important field.


Asunto(s)
Helicobacter pylori , Nanopartículas , Compuestos Organometálicos , Preparaciones Farmacéuticas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bismuto , Química Farmacéutica
14.
Nature ; 595(7868): 600-605, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34262173

RESUMEN

G-protein-coupled receptor (GPCR) kinases (GRKs) selectively phosphorylate activated GPCRs, thereby priming them for desensitization1. Although it is unclear how GRKs recognize these receptors2-4, a conserved region at the GRK N terminus is essential for this process5-8. Here we report a series of cryo-electron microscopy single-particle reconstructions of light-activated rhodopsin (Rho*) bound to rhodopsin kinase (GRK1), wherein the N terminus of GRK1 forms a helix that docks into the open cytoplasmic cleft of Rho*. The helix also packs against the GRK1 kinase domain and stabilizes it in an active configuration. The complex is further stabilized by electrostatic interactions between basic residues that are conserved in most GPCRs and acidic residues that are conserved in GRKs. We did not observe any density for the regulator of G-protein signalling homology domain of GRK1 or the C terminus of rhodopsin. Crosslinking with mass spectrometry analysis confirmed these results and revealed dynamic behaviour in receptor-bound GRK1 that would allow the phosphorylation of multiple sites in the receptor tail. We have identified GRK1 residues whose mutation augments kinase activity and crosslinking with Rho*, as well as residues that are involved in activation by acidic phospholipids. From these data, we present a general model for how a small family of protein kinases can recognize and be activated by hundreds of different GPCRs.


Asunto(s)
Quinasa 1 del Receptor Acoplado a Proteína-G/química , Rodopsina/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Bovinos , Microscopía por Crioelectrón , Estructura Terciaria de Proteína , Transducción de Señal
15.
J Inorg Biochem ; 221: 111470, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33971522

RESUMEN

Low molecular weight thiols including trypanothione and glutathione play an important function in the cellular growth, maintenance and reduction of oxidative stress in Leishmania species. In particular, parasite specific trypanothione has been established as a prime target for new anti-leishmania drugs. Previous studies into the interaction of the front-line Sb(V) based anti-leishmanial drug meglumine antimoniate with glutathione, have demonstrated that a reduction pathway may be responsible for its effective and selective nature. The new suite of organometallic complexes, of general formula [MAr3(O2CR)2] (M = Sb or Bi) have been shown to have potential as new selective drug candidates. However, their behaviour towards the critical thiols glutathione and trypanothione is still largely unknown. Using NMR spectroscopy and mass spectrometry we have examined the interaction of the analogous Sb(V) and Bi(V) organometallic complexes, [SbPh3(O2CCH2(C6H4CH3))2] S1 and [BiPh3(O2CCH2(C6H4CH3))2] B1, with the trifluoroacetate (TFA) salt of trypanothione and L-glutathione. In the presence of trypanothione or glutathione at the clinically relevant pH of 4-5 for Leishmania amastigotes, both complexes undergo facile and rapid reduction, with no discernible difference. However, at a higher pH (6-7), the complexes behave quite differently towards glutathione. The Bi(V) complex is again reduced rapidly but the Sb(V) complex undergoes slow reduction over 8 h (t1/2 = 54 min.) These results give the first insights into why the highly oxidising Bi(V) complexes display low selectivity in their cytotoxicity towards leishmanial and mammalian cells, while the Sb(V) complexes show good selectivity.


Asunto(s)
Complejos de Coordinación/química , Glutatión/análogos & derivados , Glutatión/química , Espermidina/análogos & derivados , Tripanocidas/química , Antimonio/química , Bismuto/química , Semivida , Oxidación-Reducción , Espermidina/química
16.
J Inorg Biochem ; 219: 111385, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33894637

RESUMEN

In seeking to develop single entity combination anti-Leishmanial complexes six heteropletic organometallic Sb(V) hydroxido quinolinolate complexes of general formula [SbPh3(C9H4NORR')(OH)] have been synthesised and characterised, derived from a series of halide substituted quinolinols (8-hydroxyquinolines). Single crystal X-ray diffraction on all the complexes show a common distorted six-coordinate octahedral environment at the Sb(V) centre, with the aryl groups and nitrogen atom of quinolinolate ligand bonding in the equatorial planes, with the two oxygen atoms (hydroxyl and quinolinolate) occupying the axial plane in an almost linear configuration. Each complex was tested for their anti-promastigote activity and mammalian cytotoxicity and a selectivity indices established. The complexes displayed excellent anti-promastigote activity (IC50: 2.03-3.39 µM) and varied mammalian cytotoxicity (IC50: 12.7-46.9 µM), leading to a selectivity index range of 4.52-16.7. All complexes displayed excellent anti-amastigote activity with a percentage infection range of 2.25%-9.00%. All complexes performed substantially better than the parent quinolinols and comparable carboxylate complexes [SbPh3(O2CRR')2] indicating the synergistic role of the Sb(V) and quinolinol moieties in increasing parasite mortality. Two of the complexes [SbPh3(C9H4NOBr2)(OH)] 4, [SbPh3(C9H4NOI2)(OH)] 5, provide an ideal combination of high selective and good activity towards the leishmanial amastigotes and offer the potential as good lead compounds.


Asunto(s)
Antimonio/química , Hidroxiquinolinas/química , Leishmaniasis/tratamiento farmacológico , Compuestos Organometálicos/química , Animales , Antimonio/farmacología , Antiprotozoarios/química , Antiprotozoarios/farmacología , Línea Celular , Cristalografía por Rayos X/métodos , Humanos , Hidroxiquinolinas/farmacología , Leishmania major , Leishmaniasis/metabolismo , Ligandos , Ratones , Estructura Molecular , Compuestos Organometálicos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Difracción de Rayos X/métodos
17.
Langmuir ; 37(4): 1337-1352, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33478220

RESUMEN

Previous studies have demonstrated the potential for non-steroidal anti-inflammatory drugs (NSAIDs), in particular aspirin, to be used as chemopreventives for colorectal cancer; however, a range of unwanted gastrointestinal side effects limit their effectiveness. Due to the role of bismuth in the treatment of gastrointestinal disorders, it is hypothesized that bismuth-coordinated NSAIDs (BiNSAIDs) could be used to combat the gastrointestinal side effects of NSAIDs while still maintaining their chemopreventive potential. To further understand the biological activity of these compounds, the present study examined four NSAIDs, namely, tolfenamic acid (tolfH), aspirin (aspH), indomethacin (indoH), and mefenamic acid (mefH) and their analogous homoleptic BiNSAIDs ([Bi(L)3]n), to determine how these compounds interact with biological membrane mimics composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) or a mixture of POPC and cholesterol. Electrical impedance spectroscopy studies revealed that each of the NSAIDs and BiNSAIDs influenced membrane conductance, suggesting that temporary pore formation may play a key role in the previously observed cytotoxicity of tolfH and Bi(tolf)3. Quartz crystal microbalance with dissipation monitoring showed that all the compounds were able to interact with membrane mimics composed of solely POPC or POPC/cholesterol. Finally, neutron reflectometry studies showed changes in membrane thickness and composition. The location of the compounds within the bilayer could not be determined with certainty; however, a complex interplay of interactions governs the location of small molecules, such as NSAIDs, within lipid membranes. The charged nature of the parent NSAIDs means that interactions with the polar headgroup region are most likely with larger hydrophobic sections, potentially leading to deeper penetration.


Asunto(s)
Membrana Dobles de Lípidos , Preparaciones Farmacéuticas , Antiinflamatorios no Esteroideos/toxicidad , Bismuto/toxicidad , Concentración de Iones de Hidrógeno , Fosfatidilcolinas
18.
Chemistry ; 27(8): 2569-2588, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-32761667

RESUMEN

Main-group-metal-mediated transformations of imines have earned a valued place in the synthetic chemist's toolbox. Their versatility allows the simple preparation of various nitrogen containing compounds. This review will outline the early discoveries including metallation, addition/cyclisation and metathesis pathways, followed by the modern-day use of imines in synthetic methodology. Recent advances in imine C-F activation protocols are discussed, alongside revisiting "classic" imine reactivity from a sustainable perspective. Developments in catalytic methods for hydroelementation of imines have been reviewed, highlighting the importance of s-block metals in the catalytic arena. Whilst stoichiometric transformations in alternative reaction media such as deep eutectic solvents or water have been summarised. The incorporation of imines into flow chemistry has received recent attention and is summarised within.

19.
Future Med Chem ; 12(22): 2035-2065, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33169622

RESUMEN

As bacteria continue to develop resistance to our existing treatment options, antibiotic innovation remains overlooked. If current trends continue, then we could face the stark reality of a postantibiotic era, whereby routine bacterial infections could once again become deadly. In light of a warning signaled by the WHO, a number of new initiatives have been established in the hope of reinvigorating the antibiotic drug development pipeline. In this perspective, we aim to summarize some of these initiatives and funding options, as well as providing an insight into the predicament that we face. Using clinical trials data, company website information and the most recent press releases, a current update of the antibiotic drug development pipeline is also included.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Desarrollo de Medicamentos , Antibacterianos/síntesis química , Antibacterianos/química , Farmacorresistencia Bacteriana/efectos de los fármacos , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA