Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 22(7): e3002700, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39013163

RESUMEN

The ecology of forest ecosystems depends on the composition of trees. Capturing fine-grained information on individual trees at broad scales provides a unique perspective on forest ecosystems, forest restoration, and responses to disturbance. Individual tree data at wide extents promises to increase the scale of forest analysis, biogeographic research, and ecosystem monitoring without losing details on individual species composition and abundance. Computer vision using deep neural networks can convert raw sensor data into predictions of individual canopy tree species through labeled data collected by field researchers. Using over 40,000 individual tree stems as training data, we create landscape-level species predictions for over 100 million individual trees across 24 sites in the National Ecological Observatory Network (NEON). Using hierarchical multi-temporal models fine-tuned for each geographic area, we produce open-source data available as 1 km2 shapefiles with individual tree species prediction, as well as crown location, crown area, and height of 81 canopy tree species. Site-specific models had an average performance of 79% accuracy covering an average of 6 species per site, ranging from 3 to 15 species per site. All predictions are openly archived and have been uploaded to Google Earth Engine to benefit the ecology community and overlay with other remote sensing assets. We outline the potential utility and limitations of these data in ecology and computer vision research, as well as strategies for improving predictions using targeted data sampling.


Asunto(s)
Ecosistema , Bosques , Árboles , Redes Neurales de la Computación , Ecología/métodos
2.
Proc Natl Acad Sci U S A ; 120(11): e2208120120, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36877837

RESUMEN

Increasing fire severity and warmer, drier postfire conditions are making forests in the western United States (West) vulnerable to ecological transformation. Yet, the relative importance of and interactions between these drivers of forest change remain unresolved, particularly over upcoming decades. Here, we assess how the interactive impacts of changing climate and wildfire activity influenced conifer regeneration after 334 wildfires, using a dataset of postfire conifer regeneration from 10,230 field plots. Our findings highlight declining regeneration capacity across the West over the past four decades for the eight dominant conifer species studied. Postfire regeneration is sensitive to high-severity fire, which limits seed availability, and postfire climate, which influences seedling establishment. In the near-term, projected differences in recruitment probability between low- and high-severity fire scenarios were larger than projected climate change impacts for most species, suggesting that reductions in fire severity, and resultant impacts on seed availability, could partially offset expected climate-driven declines in postfire regeneration. Across 40 to 42% of the study area, we project postfire conifer regeneration to be likely following low-severity but not high-severity fire under future climate scenarios (2031 to 2050). However, increasingly warm, dry climate conditions are projected to eventually outweigh the influence of fire severity and seed availability. The percent of the study area considered unlikely to experience conifer regeneration, regardless of fire severity, increased from 5% in 1981 to 2000 to 26 to 31% by mid-century, highlighting a limited time window over which management actions that reduce fire severity may effectively support postfire conifer regeneration.


Asunto(s)
Incendios , Tracheophyta , Incendios Forestales , Clima , Cambio Climático
3.
Nat Commun ; 13(1): 2381, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35501313

RESUMEN

The relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundation for assessing fitness in forest trees. Four major findings emerged. First, seed production is not constrained by a strict trade-off between seed size and numbers. Instead, seed numbers vary over ten orders of magnitude, with species that invest in large seeds producing more seeds than expected from the 1:1 trade-off. Second, gymnosperms have lower seed production than angiosperms, potentially due to their extra investments in protective woody cones. Third, nutrient-demanding species, indicated by high foliar phosphorus concentrations, have low seed production. Finally, sensitivity of individual species to soil fertility varies widely, limiting the response of community seed production to fertility gradients. In combination, these findings can inform models of forest response that need to incorporate reproductive potential.


Asunto(s)
Bosques , Semillas , Fertilidad , Reproducción , Semillas/fisiología , Árboles
4.
Ecol Lett ; 25(6): 1471-1482, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35460530

RESUMEN

Lack of tree fecundity data across climatic gradients precludes the analysis of how seed supply contributes to global variation in forest regeneration and biotic interactions responsible for biodiversity. A global synthesis of raw seedproduction data shows a 250-fold increase in seed abundance from cold-dry to warm-wet climates, driven primarily by a 100-fold increase in seed production for a given tree size. The modest (threefold) increase in forest productivity across the same climate gradient cannot explain the magnitudes of these trends. The increase in seeds per tree can arise from adaptive evolution driven by intense species interactions or from the direct effects of a warm, moist climate on tree fecundity. Either way, the massive differences in seed supply ramify through food webs potentially explaining a disproportionate role for species interactions in the wet tropics.


Asunto(s)
Bosques , Árboles , Biodiversidad , Clima , Fertilidad , Semillas
5.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34983867

RESUMEN

Tree fecundity and recruitment have not yet been quantified at scales needed to anticipate biogeographic shifts in response to climate change. By separating their responses, this study shows coherence across species and communities, offering the strongest support to date that migration is in progress with regional limitations on rates. The southeastern continent emerges as a fecundity hotspot, but it is situated south of population centers where high seed production could contribute to poleward population spread. By contrast, seedling success is highest in the West and North, serving to partially offset limited seed production near poleward frontiers. The evidence of fecundity and recruitment control on tree migration can inform conservation planning for the expected long-term disequilibrium between climate and forest distribution.


Asunto(s)
Cambio Climático , Árboles/fisiología , Ecosistema , Fertilidad/fisiología , Geografía , América del Norte , Incertidumbre
6.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34400503

RESUMEN

Despite its importance for forest regeneration, food webs, and human economies, changes in tree fecundity with tree size and age remain largely unknown. The allometric increase with tree diameter assumed in ecological models would substantially overestimate seed contributions from large trees if fecundity eventually declines with size. Current estimates are dominated by overrepresentation of small trees in regression models. We combined global fecundity data, including a substantial representation of large trees. We compared size-fecundity relationships against traditional allometric scaling with diameter and two models based on crown architecture. All allometric models fail to describe the declining rate of increase in fecundity with diameter found for 80% of 597 species in our analysis. The strong evidence of declining fecundity, beyond what can be explained by crown architectural change, is consistent with physiological decline. A downward revision of projected fecundity of large trees can improve the next generation of forest dynamic models.


Asunto(s)
Fertilidad , Modelos Biológicos , Regeneración , Árboles/crecimiento & desarrollo , Bosques
8.
Nat Commun ; 12(1): 1242, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33623042

RESUMEN

Indirect climate effects on tree fecundity that come through variation in size and growth (climate-condition interactions) are not currently part of models used to predict future forests. Trends in species abundances predicted from meta-analyses and species distribution models will be misleading if they depend on the conditions of individuals. Here we find from a synthesis of tree species in North America that climate-condition interactions dominate responses through two pathways, i) effects of growth that depend on climate, and ii) effects of climate that depend on tree size. Because tree fecundity first increases and then declines with size, climate change that stimulates growth promotes a shift of small trees to more fecund sizes, but the opposite can be true for large sizes. Change the depresses growth also affects fecundity. We find a biogeographic divide, with these interactions reducing fecundity in the West and increasing it in the East. Continental-scale responses of these forests are thus driven largely by indirect effects, recommending management for climate change that considers multiple demographic rates.


Asunto(s)
Cambio Climático , Árboles/fisiología , Fertilidad/fisiología , Geografía , Modelos Teóricos , América del Norte , Estaciones del Año
9.
Sci Data ; 7(1): 194, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32572035

RESUMEN

Wildland fires have a multitude of ecological effects in forests, woodlands, and savannas across the globe. A major focus of past research has been on tree mortality from fire, as trees provide a vast range of biological services. We assembled a database of individual-tree records from prescribed fires and wildfires in the United States. The Fire and Tree Mortality (FTM) database includes records from 164,293 individual trees with records of fire injury (crown scorch, bole char, etc.), tree diameter, and either mortality or top-kill up to ten years post-fire. Data span 142 species and 62 genera, from 409 fires occurring from 1981-2016. Additional variables such as insect attack are included when available. The FTM database can be used to evaluate individual fire-caused mortality models for pre-fire planning and post-fire decision support, to develop improved models, and to explore general patterns of individual fire-induced tree death. The database can also be used to identify knowledge gaps that could be addressed in future research.


Asunto(s)
Incendios , Agricultura Forestal , Bosques , Árboles , Bases de Datos como Asunto , Estados Unidos
10.
Ecology ; 101(5): e02998, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32012254

RESUMEN

Understanding how severe disturbances and their interactions affect forests is key to projecting ecological change under a warming climate. Substantial increases in some biotic disturbances, such as bark beetle outbreaks, in temperate forest ecosystemsmay compromise recovery to a forest vegetation type (i.e., physiognomic recovery or resilience), especially if subsequent biotic disturbances (e.g., herbivory) alter recovery mechanisms. From 2005 to 2017, severe outbreaks (>90% mortality) of spruce bark beetles (SB, Dendroctonus rufipennis) affected Engelmann spruce (Picea engelmannii) across 325,000 ha of spruce and subalpine fir (Abies lasiocarpa) forest in the southern Rocky Mountains, USA. Concurrently, an outbreak of western balsam bark beetle (WBBB, Dryocoetes confuses) infested subalpine fir across at least 47,000 of these hectares. We explored the capacity of 105 stands affected by one or two bark beetle outbreaks and browsing of juvenile trees by ungulates to return to a forest vegetation type in the context of pre-outbreak forest conditions and topography. Nine initial forest trajectories (i.e., at least several decades) were identified from four pre-outbreak forest types affected by three biotic disturbances that occurred at different spatial scales and severities. Most stands (86%) contained surviving nonhost adult trees in the main canopy (fir and aspen [Populus tremuloides]) and many surviving juveniles of all species, implying that they are currently on a trajectory for physiognomic recovery. Stands composed exclusively of large-diameter spruce were affected by a severe SB outbreak and were most vulnerable to a transition to a low-density forest, below regional stocking levels (<370 trees/ha). Greater pre-outbreak stand structural complexity and species diversity were key traits of stands with a higher potential for physiognomic recovery. However, all multispecies stands shifted in relative composition of the main canopy to nonhost species, suggesting low potential for compositional recovery over the next several decades. Most post-outbreak stands (86%) exceeded regional stocking levels with trees taller than the browse zone (<2 m). As such, ungulate browsing on over half of all juveniles will primarily affect the rate of infilling of the forest canopy and preferential browsing of more palatable species will influence the composition of the future forest canopy.


Asunto(s)
Escarabajos , Picea , Animales , Bálsamos , Brotes de Enfermedades , Bosques , Corteza de la Planta , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA