Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microb Cell ; 3(12): 579-581, 2016 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-28357329

RESUMEN

The recent announcement of the 2016 Nobel Prize in Physiology or Medicine, awarded to Yoshinori Ohsumi for the discoveries of mechanisms governing autophagy, underscores the importance of intracellular degradation and recycling. At the same time, it further cements yeast, in which this field decisively developed, as a prolific model organism. Here we provide a quick historical overview that mirrors both the importance of autophagy as a conserved and essential process for cellular life and death as well as the crucial role of yeast in its mechanistic characterization.

2.
Autophagy ; 10(6): 1143-5, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24879160

RESUMEN

The multifaceted process of aging inevitably leads to disturbances in cellular metabolism and protein homeostasis. To meet this challenge, cells make use of autophagy, which is probably one of the most important pathways preserving cellular protection under stressful conditions. Thus, efficient autophagic flux is required for healthy aging in many if not all eukaryotic organisms. The regulation of autophagy itself is affected by changing metabolic conditions, but the precise metabolic circuitries are poorly understood. Recently, we found that the nucleocytosolic pool of acetyl-coenzyme A (AcCoA) functions as a major and dominant suppressor of cytoprotective autophagy during aging. Here, we propose an epigenetic mechanism for AcCoA-mediated autophagy suppression that causally involves the regulation of histone acetylation and changes in the autophagy-relevant transcriptome.


Asunto(s)
Autofagia , Coenzima A Ligasas/metabolismo , Proteínas de Drosophila/metabolismo , Longevidad , Animales
3.
Cell Metab ; 19(3): 431-44, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24606900

RESUMEN

Healthy aging depends on removal of damaged cellular material that is in part mediated by autophagy. The nutritional status of cells affects both aging and autophagy through as-yet-elusive metabolic circuitries. Here, we show that nucleocytosolic acetyl-coenzyme A (AcCoA) production is a metabolic repressor of autophagy during aging in yeast. Blocking the mitochondrial route to AcCoA by deletion of the CoA-transferase ACH1 caused cytosolic accumulation of the AcCoA precursor acetate. This led to hyperactivation of nucleocytosolic AcCoA-synthetase Acs2p, triggering histone acetylation, repression of autophagy genes, and an age-dependent defect in autophagic flux, culminating in a reduced lifespan. Inhibition of nutrient signaling failed to restore, while simultaneous knockdown of ACS2 reinstated, autophagy and survival of ach1 mutant. Brain-specific knockdown of Drosophila AcCoA synthetase was sufficient to enhance autophagic protein clearance and prolong lifespan. Since AcCoA integrates various nutrition pathways, our findings may explain diet-dependent lifespan and autophagy regulation.


Asunto(s)
Autofagia , Coenzima A Ligasas/metabolismo , Proteínas de Drosophila/metabolismo , Longevidad , Acetilcoenzima A/biosíntesis , Acetilación , Envejecimiento , Animales , Proteína 7 Relacionada con la Autofagia , Coenzima A Ligasas/antagonistas & inhibidores , Coenzima A Ligasas/genética , Drosophila/enzimología , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/genética , Metabolismo Energético , Histonas/metabolismo , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/deficiencia , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Regulación hacia Arriba
4.
Mol Cell ; 53(5): 710-25, 2014 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-24560926

RESUMEN

Acetyl-coenzyme A (AcCoA) is a major integrator of the nutritional status at the crossroads of fat, sugar, and protein catabolism. Here we show that nutrient starvation causes rapid depletion of AcCoA. AcCoA depletion entailed the commensurate reduction in the overall acetylation of cytoplasmic proteins, as well as the induction of autophagy, a homeostatic process of self-digestion. Multiple distinct manipulations designed to increase or reduce cytosolic AcCoA led to the suppression or induction of autophagy, respectively, both in cultured human cells and in mice. Moreover, maintenance of high AcCoA levels inhibited maladaptive autophagy in a model of cardiac pressure overload. Depletion of AcCoA reduced the activity of the acetyltransferase EP300, and EP300 was required for the suppression of autophagy by high AcCoA levels. Altogether, our results indicate that cytosolic AcCoA functions as a central metabolic regulator of autophagy, thus delineating AcCoA-centered pharmacological strategies that allow for the therapeutic manipulation of autophagy.


Asunto(s)
Acetilcoenzima A/química , Autofagia , Citosol/enzimología , Regulación Enzimológica de la Expresión Génica , Adenosina Trifosfato/química , Animales , Línea Celular Tumoral , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Citosol/metabolismo , Proteína p300 Asociada a E1A/química , Proteínas Fluorescentes Verdes/metabolismo , Células HCT116 , Células HeLa , Humanos , Ácidos Cetoglutáricos/química , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente , Mitocondrias/metabolismo , ARN Interferente Pequeño/metabolismo
6.
Biochemistry ; 48(15): 3370-7, 2009 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-19256550

RESUMEN

In a large number of plant species hydroxynitrile lyases catalyze the decomposition of cyanohydrins in order to generate hydrogen cyanide upon tissue damage. Hydrogen cyanide serves as a deterrent against herbivores and fungi. In vitro hydroxynitrile lyases are proficient biocatalysts for the stereospecific synthesis of cyanohydrins. Curiously, hydroxynitrile lyases from different species are completely unrelated in structure and substrate specificity despite catalyzing the same reaction. The hydroxynitrile lyase from almond shows close resemblance to flavoproteins of the glucose-methanol-choline oxidoreductase family. We report here 3D structural data of this lyase with the reaction product benzaldehyde bound within the active site, which allow unambiguous assignment of the location of substrate binding. Based on the binding geometry, a reaction mechanism is proposed that involves one of the two conserved active site histidine residues acting as a general base abstracting the proton from the cyanohydrin hydroxyl group. Site-directed mutagenesis shows that both active site histidines are required for the reaction to occur. There is no evidence that the flavin cofactor directly participates in the reaction. Comparison with other hydroxynitrile lyases reveals a large diversity of active site architectures, which, however, share the common features of a general active site base and a nearby patch with positive electrostatic potential. On the basis of the difference in substrate binding geometry between the FAD-dependent HNL from almond and the related oxidases, we can rationalize why the HNL does not act as an oxidase.


Asunto(s)
Aldehído-Liasas/química , Aldehído-Liasas/metabolismo , Flavina-Adenina Dinucleótido/química , Nitrilos/química , Nitrilos/metabolismo , Prunus/enzimología , Acetonitrilos/química , Acetonitrilos/metabolismo , Aldehído-Liasas/genética , Sitios de Unión , Catálisis , Cristalización , Cristalografía por Rayos X , Flavina-Adenina Dinucleótido/fisiología , Hidrogenación , Ligandos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Prunus/genética , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA