Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 313
1.
J Agric Food Chem ; 72(20): 11804-11819, 2024 May 22.
Article En | MEDLINE | ID: mdl-38717061

Apples (Malus × domestica Borkh.) and pears (Pyrus communis L.) are valuable crops closely related within the Rosaceae family with reported nutraceutical properties derived from secondary metabolites including phloridzin and arbutin, which are distinctive phenolic metabolites characterizing apples and pears, respectively. Here, we generated a de novo transcriptome assembly of an intergeneric hybrid between apple and pear, accumulating intermediate levels of phloridzin and arbutin. Combining RNA-seq, in silico functional annotation prediction, targeted gene expression analysis, and expression-metabolite correlations, we identified candidate genes for functional characterization, resulting in the identification of active arbutin synthases in the hybrid and parental genotypes. Despite exhibiting an active arbutin synthase in vitro, the natural lack of arbutin in apples is reasoned by the absence of the substrate and broad substrate specificity. Altogether, our study serves as the basis for future assessment of potential physiological roles of identified genes by genome editing of hybrids and pears.


Arbutin , Chalcones , Fruit , Malus , Plant Proteins , Pyrus , Transcriptome , Malus/genetics , Malus/metabolism , Malus/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/chemistry , Pyrus/genetics , Pyrus/metabolism , Pyrus/chemistry , Arbutin/metabolism , Arbutin/chemistry , Fruit/genetics , Fruit/metabolism , Fruit/chemistry , Chalcones/metabolism , Chalcones/chemistry , Gene Expression Regulation, Plant , Hybridization, Genetic
2.
ChemMedChem ; : e202400147, 2024 May 07.
Article En | MEDLINE | ID: mdl-38713763

Carbonic Anhydrases (CAs) are a large family of zinc metalloenzymes that catalyze the reversible hydration of carbon dioxide involved in several biological processes. They show a wide diversity in tissue distribution and their subcellular localization. Twenty-two novel phthalazine derivatives were designed, synthesized, and evaluated against four human isoforms: hCA I, hCA II, hCA IX, and hCA XII. Compounds appeared to be very active mostly against hCA IX (7) and hCA I (6) isoforms being more potent than reference drug acetazolamide (AAZ). Some compounds appeared to be very selective with a selectivity index up to 13.8. Furthermore, docking was performed for some of these compounds on all isoforms to understand the possible interactions with the active site. Additionally, the most active compounds against hCA IX were subjected to cell viability assay. The anticancer activity of the compounds (3a-d, 5d, 5i, and 5m) was investigated using two human breast cancer cell lines, i.e. MCF-7 and MDA-MB-231 cells, and the normal counterpart, namely MCF10-A cells.

3.
J Agric Food Chem ; 2024 Apr 13.
Article En | MEDLINE | ID: mdl-38613500

Citrus fruits are among the most economically important crops in the world. In the global market, the Citrus peel is often considered a byproduct but substitutes an important phenotypic characteristic of the fruit and a valuable source of essential oils, flavonoids, carotenoids, and phenolic acids with variable concentrations. The Mediterranean basin is a particularly dense area of autochthonous genotypes of Citrus that are known for being a source of healthy foods, which can be repertoires of valuable genes for molecular breeding with the focus on plant resistance and quality improvement. The scope of this study was to characterize and compare the main phenotypic parameters (i.e., peel thickness, fruit volume, and area) and levels of bioactive compounds in the peel of fruits from the local germplasm of Citrus in Greece, to assess their chemodiversity regarding their polyphenolic, volatile, and carotenoid profiles. A targeted liquid chromatographic approach revealed hesperidin, tangeretin, narirutin, eriocitrin, and quercetin glycosides as the major polyphenolic compounds identified in orange, lemon, and mandarin peels. The content of tangeretin and narirutin followed the tendency mandarin > orange > lemon. Eriocitrin was a predominant metabolite of lemon peel, following its identification in lower amounts in mandarin and at least in the orange peel. For these citrus-specific metabolites, high intra- but also interspecies chemodiversity was monitored. Significant diversity was found in the essential oil content, which varied between 1.2 and 3% in orange, 0.2 and 1.4% in mandarin, and 0.9 and 1.9% in lemon peel. Limonene was the predominant compound in all Citrus species peel essential oils, ranging between 88 and 93% among the orange, 64 and 93% in mandarin, and 55 and 63% in lemon cultivars. Carotenoid analysis revealed different compositions among the Citrus species and accessions studied, with ß-cryptoxanthin being the most predominant metabolite. This large-scale metabolic investigation will enhance the knowledge of Citrus peel secondary metabolite chemodiversity supported by the ample availability of Citrus genetic resources to further expand their exploitation in future breeding programs and potential applications in the global functional food and pharmaceutical industries.

4.
Int J Biol Macromol ; 268(Pt 1): 131548, 2024 May.
Article En | MEDLINE | ID: mdl-38642682

The coumarin is one of the most promising classes of non-classical carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. In continuation of our ongoing work on search of coumarin based selective carbonic anhydrase inhibitors, a new series of 6-aminocoumarin based 16 novel analogues of coumarin incorporating thiazole (4a-p) have been synthesized and studied for their hCA inhibitory activity against a panel of human carbonic anhydrases (hCAs). Most of these newly synthesized compounds exhibited interesting inhibition constants in the nanomolar range. Among the tested compounds, the compounds 4f having 4-methoxy substitution exhibited activity at 90.9 nM against hCA XII isoform. It is noteworthy to see that all compounds were specifically and selectively active against isoforms hCA IX and hCA XII, with Ki under 1000 nM range. It is anticipated that these newly synthesized coumarin-thiazole hybrids (4a-p) may emerge as potential leads candidates against hCA IX and hCA XII as selective inhibitors compared to hCA I and hCA II.


Carbonic Anhydrase IX , Carbonic Anhydrase Inhibitors , Carbonic Anhydrases , Coumarins , Drug Design , Thiazoles , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/pharmacology , Humans , Coumarins/chemistry , Coumarins/pharmacology , Coumarins/chemical synthesis , Thiazoles/chemistry , Thiazoles/pharmacology , Thiazoles/chemical synthesis , Carbonic Anhydrase IX/antagonists & inhibitors , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrases/metabolism , Structure-Activity Relationship , Antigens, Neoplasm/metabolism
5.
Expert Opin Ther Pat ; : 1-31, 2024 May 20.
Article En | MEDLINE | ID: mdl-38684444

INTRODUCTION: The oral cavity harbors an extensive array of over 700 microorganisms, forming the most complex biome of the entire human body, with bacterial species being the most abundant. Oral diseases, e.g. periodontitis and caries, are strictly associated with bacterial dysbiosis. Porphyromonas gingivalis and Streptococcus mutans stand out among bacteria colonizing the oral cavity. AREAS COVERED: After a brief overview of the bacterial populations in the oral cavity and their roles in regulating (flora) oral cavity or causing diseases like periodontal and cariogenic pathogens, we focused our attention on P. gingivalis and S. mutans, searching for the last-5-year patents dealing with the proposal of new strategies to fight their infections. Following the PRISMA protocol, we filtered the results and analyzed over 100 applied/granted patents, to provide an in-depth insight into this R&D scenario. EXPERT OPINION: Several antibacterial proposals have been patented in this period, from both chemical - peptides and small molecules - and biological - probiotics and antibodies - sources, along with natural extracts, polymers, and drug delivery systems. Most of the inventors are from China and Korea and their studies also investigated anti-inflammatory and antioxidant effects, being beneficial to oral health through a prophylactic, protective, or curative effect.

6.
ACS Med Chem Lett ; 15(4): 470-477, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38628786

A series of 1-(4-sulfamoylbenzoyl)piperidine-4-carboxamides deriving from substituted piperazines/benzylamines was designed, synthesized, and tested on human carbonic anhydrase (hCA). The inhibitory activity of the new sulfonamides was analyzed using acetazolamide (AAZ) as a standard inhibitor against hCA I, II, IX, and XII. Several sulfonamides showed both inhibitory activity at low nanomolar concentrations and selectivity against the cytosolic hCA II isoform, and the same trend was observed on the tumor-associated hCA IX and XII. The benzenesulfonamido carboxamides 11 and 15 were the most potent of the piperazino- and benzylamino-based series, respectively. Docking and molecular dynamics studies related the high selectivity of compound 11 toward the tumor-associated hCA isoforms to its capability to participate in favorable interactions within hCA IX and hCA XII active sites, whereas no such interactions were detected within both hCA I and hCA II isoforms.

7.
Arch Pharm (Weinheim) ; : e2400038, 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38498884

A novel series of sulfonamide-incorporated bis(α-aminophosphonates) acting as effective carbonic anhydrase (CA, EC 4.2.1.1) inhibitors is reported. The synthesized bivalent ligands were tested against five human (h) isoforms, hCA I, hCA II, hCA VII, hCA IX, and hCA XIII. Such derivatives showed high activity and selectivity against the cancer-related, membrane-bound isoform hCA IX, and among them, compound 5h, tetraisopropyl (1,3-phenylenebis{[(4-sulfamoylphenyl)amino]methylene})bis(phosphonate) showed a KI of 15.1 nM, being highly selective against this isoform over all other investigated ones (hCA I/IX = 42; hCA II/IX = 6, hCA VII/IX = 3, hCA XIII/IX = 5). Therefore, compound 5h could be a potential lead for the development of selective anticancer agents. The newly developed sulfonamides were also found effective inhibitors against the cytosolic hCA XIII isoform. Compound 5i displayed the best inhibition against this isoform with a KI of 17.2 nM, equal to that of the well-known inhibitor acetazolamide (AAZ), but significantly more selective over all other tested isoforms (hCA I/XIII = 239; hCA II/XIII = 23, hCA VII/XIII = 2, hCA IX/XIII = 3) compared to AAZ.

8.
Arch Pharm (Weinheim) ; : e2300718, 2024 Mar 11.
Article En | MEDLINE | ID: mdl-38466120

A new series of isatin-linked benzenesulfonamide derivatives (9a-w) were synthesized using the tail approach and assayed for their inhibitory potency against four different human carbonic anhydrase (hCA) isoforms, hCA I, II, IX, and XII. Most of these synthesized compounds exhibited interesting inhibition potency against isoforms hCA I, IX, and XII in the nanomolar range and by taking the standard drug acetazolamide. The most potent compounds in the case of hCA I were 9c (435.8 nM) and 9s (956.4 nM), for hCA IX, 9a (60.5 nM), 9d (95.6 nM), 9g (92.1 nM), and 9k (75.4 nM), and for hCA XII, 9p (84.5 nM). However, these compounds showed more selectivity toward hCA IX over hCA I, II, and XII. Thus, these compounds can be further developed as potential lead molecules for the development of isoform-selective hCA IX inhibitors with further structural modifications.

9.
Chem Asian J ; 19(8): e202400067, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38334332

The inhibitory effects of veralipride, a benzamide-class antipsychotic acting as dopamine D2 receptors antagonist incorporates a primary sulfonamide moiety and was investigated for its interactions with carbonic anhydrase (CA) isoforms. In vitro profiling using the stopped-flow technique revealed that veralipride exhibited potent inhibitory activity across all tested hCA isoforms, with exception of hCA III. Comparative analysis with standard inhibitors, acetazolamide (AAZ), and sulpiride, provided insights for understanding the relative efficacy of veralipride as CA inhibitor. The study reports the X-ray crystal structure analysis of the veralipride adduct with three human (h) isoforms, hCA I, II, and CA XII mimic, allowing the understanding of the molecular interactions rationalizing its inhibitory effects against each isoform. These findings contribute to our understanding of veralipride pharmacological properties and for the design of structural analogs endowed with polypharmacological properties.


Carbonic Anhydrase Inhibitors , Carbonic Anhydrases , Humans , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase Inhibitors/chemical synthesis , Crystallography, X-Ray , Carbonic Anhydrases/metabolism , Carbonic Anhydrases/chemistry , Dopamine D2 Receptor Antagonists/pharmacology , Dopamine D2 Receptor Antagonists/chemistry , Dopamine D2 Receptor Antagonists/chemical synthesis , Benzamides/chemistry , Benzamides/pharmacology , Benzamides/chemical synthesis , Receptors, Dopamine D2/metabolism , Molecular Structure , Models, Molecular , Isoenzymes/antagonists & inhibitors , Isoenzymes/metabolism , Structure-Activity Relationship
10.
Article En | MEDLINE | ID: mdl-38367264

INTRODUCTION: Carbonic anhydrases (CAs) are widespread metalloenzymes with the core function of catalyzing the interconversion of CO2 and HCO3-. Targeting these enzymes using selective inhibitors has emerged as a promising approach for the development of novel therapeutic agents against multiple diseases. METHOD: A series of novel thiosemicarbazones-containing derivatives were synthesized, characterized, and tested for their inhibitory activity against pharmaceutically important human CA I (hCA I), II (hCA II), IX (hCA IX), and XII (hCA XII) using the single tail approach. RESULT: The compounds generally inhibited the isoenzymes at low nanomolar concentrations, with compound 6b having Ki values of 7.16, 0.31, 92.5, and 375 nM against hCA I, II, IX and XII, respectively. Compound 6e exhibited Ki values of 27.6, 0.34, 872, and 94.5 nM against hCA I, II, IX and XII, respectively. CONCLUSION: To rationalize the inhibition data, molecular docking studies were conducted, providing insight into the binding mechanisms, molecular interactions, and selectivity of the compounds towards the isoenzymes.

11.
BMC Plant Biol ; 24(1): 99, 2024 Feb 09.
Article En | MEDLINE | ID: mdl-38331743

BACKGROUND: Flavonoids are plant specialised metabolites, which derive from phenylalanine and acetate metabolism. They possess a variety of beneficial characteristics for plants and humans. Several modification steps in the synthesis of tricyclic flavonoids cause for the amazing diversity of flavonoids in plants. The 2-oxoglutarate-dependent dioxygenases (2-ODDs) flavanone 3-hydroxylase (F3H, synonym FHT), flavonol synthase (FLS) and anthocyanidin synthase (ANS, synonym leucoanthocyanidin dioxygenase (LDOX)), catalyse oxidative modifications to the central C ring. They are highly similar and have been shown to catalyse, at least in part, each other's reactions. FLS and ANS have been identified as bifunctional enzymes in many species, including Arabidopsis thaliana, stressing the capability of plants to bypass missing or mutated reaction steps on the way to flavonoid production. However, little is known about such bypass reactions and the flavonoid composition of plants lacking all three central flavonoid 2-ODDs. RESULTS: To address this issue, we generated a f3h/fls1/ans mutant, as well as the corresponding double mutants and investigated the flavonoid composition of this mutant collection. The f3h/fls1/ans mutant was further characterised at the genomic level by analysis of a nanopore DNA sequencing generated genome sequence assembly and at the transcriptomic level by RNA-Seq analysis. The mutant collection established, including the novel double mutants f3h/fls1 and f3h/ans, was used to validate and analyse the multifunctionalities of F3H, FLS1, and ANS in planta. Metabolite analyses revealed the accumulation of eriodictyol and additional glycosylated derivatives in mutants carrying the f3h mutant allele, resulting from the conversion of naringenin to eriodictyol by flavonoid 3'-hydroxylase (F3'H) activity. CONCLUSIONS: We describe the in planta multifunctionality of the three central flavonoid 2-ODDs from A. thaliana and identify a bypass in the f3h/fls1/ans triple mutant that leads to the formation of eriodictyol derivatives. As (homo-)eriodictyols are known as bitter taste maskers, the annotated eriodictyol (derivatives) and in particular the observations made on their in planta production, could provide valuable insights for the creation of novel food supplements.


Arabidopsis , Flavanones , Humans , Arabidopsis/metabolism , Flavonoids/metabolism , Gene Expression Regulation, Plant , Plants/metabolism
12.
J Med Chem ; 67(4): 3018-3038, 2024 Feb 22.
Article En | MEDLINE | ID: mdl-38301036

New dihydro-pyrrol-2-one compounds, featuring dual sulfonamide groups, were synthesized through a one-pot, three-component approach utilizing trifluoroacetic acid as a catalyst. Computational analysis using density functional theory (DFT) and condensed Fukui function explored the structure-reactivity relationship. Evaluation against human carbonic anhydrase isoforms (hCA I, II, IX, XII) revealed potent inhibition. The widely expressed cytosolic hCA I was inhibited across a range of concentrations (KI 3.9-870.9 nM). hCA II, also cytosolic, exhibited good inhibition as well. Notably, all compounds effectively inhibited tumor-associated hCA IX (KI 1.9-211.2 nM) and hCA XII (low nanomolar). Biological assessments on MCF7 cancer cells highlighted the compounds' ability, in conjunction with doxorubicin, to significantly impact tumor cell viability. These findings underscore the potential therapeutic relevance of the synthesized compounds in cancer treatment.


Carbonic Anhydrases , Neoplasms , Humans , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase IX , Structure-Activity Relationship , Carbonic Anhydrases/metabolism , Protein Isoforms , Molecular Structure , Antigens, Neoplasm
13.
Steroids ; 205: 109381, 2024 May.
Article En | MEDLINE | ID: mdl-38325751

This investigation delves into the inhibitory capabilities of a specific set of triterpenoic acids on diverse isoforms of human carbonic anhydrase (hCA). Oleanolic acid (1), maslinic acid (2), betulinic acid (3), platanic acid (4), and asiatic acid (5) were chosen as representative triterpenoids for evaluation. The synthesis involved acetylation of parent triterpenoic acids 1-5, followed by sequential reactions with oxalyl chloride and benzylamine, de-acetylation of the amides, and subsequent treatment with sodium hydride and sulfamoyl chloride, leading to the formation of final compounds 21-25. Inhibition assays against hCAs I, II, VA, and IX demonstrated noteworthy outcomes. A derivative of betulinic acid, compound 23, exhibited a Ki value of 88.1 nM for hCA VA, and a derivative of asiatic acid, compound 25, displayed an even lower Ki value of 36.2 nM for the same isoform. Notably, the latter compound displayed enhanced inhibitory activity against hCA VA when compared to the benchmark compound acetazolamide (AAZ), which had a Ki value of 63.0 nM. Thus, this compound surpasses the inhibitory potency and isoform selectivity of the standard compound acetazolamide (AAZ). In conclusion, the research offers insights into the inhibitory potential of selected triterpenoic acids across diverse hCA isoforms, emphasizing the pivotal role of structural attributes in determining isoform-specific inhibitory activity. The identification of compound 25 as a robust and selective hCA VA inhibitor prompts further exploration of its therapeutic applications.


Acetazolamide , Carbonic Anhydrases , Pentacyclic Triterpenes , Humans , Acetazolamide/pharmacology , Betulinic Acid , Carbonic Anhydrase I/metabolism , Carbonic Anhydrase II/metabolism , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrases/chemistry , Carbonic Anhydrases/metabolism , Molecular Structure , Oleanolic Acid/chemistry , Oleanolic Acid/metabolism , Protein Isoforms , Structure-Activity Relationship
14.
J Med Chem ; 67(4): 3066-3089, 2024 Feb 22.
Article En | MEDLINE | ID: mdl-38266245

Glaucoma, a leading cause of irreversible vision loss worldwide, is characterized by elevated intraocular pressure (IOP), a well-established risk factor across all its forms. We present the design and synthesis of 39 novel carbonic anhydrase inhibitors by a dual-tailed approach, strategically crafted to interact with distinct hydrophobic and hydrophilic pockets of CA active sites. The series was investigated against the CA isoforms implicated in glaucoma (hCA II, hCA IV, and hCA XII), and the X-ray crystal structures of compounds 25a, 25f, and 26a with CA II, along with 14b in complex with a hCA XII mimic, were determined. Selected compounds (14a, 25a, and 26a) underwent evaluation for their ability to reduce IOP in rabbits with ocular hypertension. Derivative 26a showed significant potency and sustained IOP-lowering effects, surpassing the efficacy of the drugs dorzolamide and bimatoprost. This positions compound 26a as a promising candidate for the development of a novel anti-glaucoma medication.


Carbonic Anhydrases , Glaucoma , Animals , Rabbits , Carbonic Anhydrases/metabolism , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase Inhibitors/therapeutic use , Carbonic Anhydrase Inhibitors/chemistry , Glaucoma/drug therapy , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Sulfonamides/chemistry , Protein Isoforms , Sulfanilamide , Structure-Activity Relationship , Carbonic Anhydrase IX
15.
Int J Mol Sci ; 25(2)2024 Jan 12.
Article En | MEDLINE | ID: mdl-38256046

The implementation of innovative approaches is crucial in an ongoing endeavor to mitigate the impact of COVID-19 pandemic. The present study examines the strategic application of the SARS-CoV-2 Main Protease (Mpro) as a prospective instrument in the repertoire to combat the virus. The cloning, expression, and purification of Mpro, which plays a critical role in the viral life cycle, through heterologous expression in Escherichia coli in a completely soluble form produced an active enzyme. The hydrolysis of a specific substrate peptide comprising a six-amino-acid sequence (TSAVLQ) linked to a p-nitroaniline (pNA) fragment together with the use of a fluorogenic substrate allowed us to determine effective inhibitors incorporating selenium moieties, such as benzoselenoates and carbamoselenoates. The new inhibitors revealed their potential to proficiently inhibit Mpro with IC50-s in the low micromolar range. Our study contributes to the development of a new class of protease inhibitors targeting Mpro, ultimately strengthening the antiviral arsenal against COVID-19 and possibly, related coronaviruses.


COVID-19 , Coronavirus 3C Proteases , Selenium , Humans , Selenium/pharmacology , Pandemics , Prospective Studies , SARS-CoV-2 , Escherichia coli
16.
Arch Pharm (Weinheim) ; 357(1): e2300449, 2024 Jan.
Article En | MEDLINE | ID: mdl-37828544

New 5-cyano-6-oxo-pyridine-based sulfonamides (6a-m and 8a-d) were designed and synthesized to potentially inhibit both the epidermal growth factor receptor (EGFR) and carbonic anhydrase (CA), with anticancer properties. First, the in vitro anticancer activity of each target substance was tested using Henrietta Lacks cancer cell line and M.D. anderson metastasis breast cancer cell line cells. Then, the possible CA inhibition against the human CA isoforms I, II, and IX was investigated, together with the EGFR inhibitory activity, with the most powerful derivatives. The neighboring methoxy group may have had a steric effect on the target sulfonamides, which prevented them from effectively inhibiting the CA isoforms while effectively inhibiting the EGFR. The effects of the 5-cyanopyridine derivatives 6e and 6l on cell-cycle disruption and the apoptotic potential were then investigated. To investigate the binding mechanism and stability of the target molecules, thorough molecular modeling assessments, including docking and dynamic simulation, were performed.


Antineoplastic Agents , Carbonic Anhydrases , Humans , Benzenesulfonamides , Carbonic Anhydrase IX/metabolism , Structure-Activity Relationship , Molecular Docking Simulation , Sulfonamides/pharmacology , Sulfonamides/chemistry , Carbonic Anhydrases/metabolism , Antineoplastic Agents/chemistry , ErbB Receptors/metabolism , Protein Isoforms/metabolism , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase Inhibitors/chemistry , Molecular Structure
17.
Molecules ; 28(23)2023 Nov 26.
Article En | MEDLINE | ID: mdl-38067512

Sulfonamides remain an important class of drugs, especially because of their inhibitory effects on carbonic anhydrases. Herein, we have synthesized several sulfonamides and tested them for their inhibitory activity against carbonic anhydrases hCA I, hCA II, hCA IX, and hCA XII, respectively. Thereby, biphenyl- and benzylphenyl-substituted sulfonamides showed high selectivity against hCA IX and hCA XII; these enzymes are common targets in the treatment of hypoxic cancers, and noteworthy inhibitory activity was observed for several compounds toward hCA I that might be of interest for future applications to treat cerebral edema. Compound 3 (4-[3-(2-benzylphenyl)ureido]benzenesulfonamide) held an exceptionally low Ki value of 1.0 nM for hCA XII.


Carbonic Anhydrase I , Carbonic Anhydrases , Carbonic Anhydrase IX , Structure-Activity Relationship , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrases/metabolism , Sulfonamides/pharmacology , Molecular Structure , Antigens, Neoplasm
18.
Rev. polis psique ; 13(2)2023-11-13.
Article Pt | LILACS-Express | LILACS | ID: biblio-1517838

Esse trabalho decorre da produção da pesquisa "Potências clínicas nos corpos em criação nas experimentações artísticas do programa TOCCA" realizada durante os anos de 2018 e 2021. O artigo se volta a mostrar a análise cartográfica de um dos grupos observados e os processos de constituição de corpos dançarinos e de uma obra em dança. Compreendeu-se que o entrelaçamento dos conhecimentos da terapia ocupacional e das artes da cena pode vir a criar saberes transversais, desde as práticas de educação somática, que fortalecem e ampliam ambos os campos em suas potências éticas, estéticas e políticas. Bem como, podem instaurar um dispositivo poético clínico para a produção do comum.

19.
Expert Opin Ther Pat ; 33(11): 775-796, 2023 Nov.
Article En | MEDLINE | ID: mdl-37847492

INTRODUCTION: The therapeutic targeting of the ubiquitin-proteasome pathway (UPP) through inhibitors of the 20S proteasome core proteolytic activities has revolutionized the treatment of hematological malignancies and is paving the way for its extension to solid tumors. AREAS COVERED: This review covers the progress made in the field of proteasome inhibitors, ranging from the first-generation bortezomib to the latest second-generation inhibitors such as carfilzomib and ixazomib as well as the proteasome inhibitors in clinical phase such as oprozomib and marizomib. The development of selective and potent proteasome inhibitors with improved pharmacological properties is described from the synthesis to their basic biological, and clinical validation. EXPERT OPINION: Proteasome inhibitors have transformed the treatment landscape for hematological malignancies and hold great promise for cancer therapy. Combination therapies targeting multiple pathways, the development of novel inhibitors or 'hybrid-inhibitors,' and the optimization of treatment protocols are key areas for future exploration. The extension of proteasome inhibitors for the treatment of solid tumors, and their ability to pass the blood-brain barrier open new possibilities for treating central nervous system cancers. However, managing adverse effects, particularly those affecting the central nervous system, remains a critical consideration and a strategic 'working on' aspect for the near future.


Antineoplastic Agents , Hematologic Neoplasms , Multiple Myeloma , Neoplasms , Humans , Proteasome Inhibitors/adverse effects , Patents as Topic , Antineoplastic Agents/adverse effects , Neoplasms/drug therapy , Hematologic Neoplasms/drug therapy , Multiple Myeloma/drug therapy
20.
J Enzyme Inhib Med Chem ; 38(1): 2270183, 2023 Dec.
Article En | MEDLINE | ID: mdl-37870190

Tumour associated carbonic anhydrases (CAs) IX and XII have been recognised as potential targets for the treatment of hypoxic tumours. Therefore, considering the high pharmacological potential of the chromene scaffold as selective ligand of the IX and XII isoforms, two libraries of compounds, namely 2H-chromene and 7H-furo-chromene derivatives, with diverse substitution patterns were designed and synthesised. The structure of the newly synthesised compounds was characterised and their inhibitory potency and selectivity towards human CA off target isoforms I, II and cancer-associated CA isoforms IX and XII were evaluated. Most of the compounds inhibit CA isoforms IX and XII with no activity against the I and II isozymes. Thus, while the potency was influenced by the substitution pattern along the chromene scaffold, the selectivity was conserved along the series, confirming the high potential of both 2H-chromene and 7H-furo-chromene scaffolds for the design of isozyme selective inhibitors.


Carbonic Anhydrases , Neoplasms , Humans , Carbonic Anhydrase IX , Carbonic Anhydrases/metabolism , Carbonic Anhydrase I , Carbonic Anhydrase II , Structure-Activity Relationship , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase Inhibitors/chemistry , Neoplasms/drug therapy , Neoplasms/pathology , Antigens, Neoplasm/chemistry , Benzopyrans/pharmacology , Isoenzymes/metabolism , Molecular Structure
...