Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Nat Commun ; 14(1): 7015, 2023 11 02.
Article En | MEDLINE | ID: mdl-37919289

SARS-CoV-2 neutralising antibodies provide protection against COVID-19. Evidence from early vaccine trials suggested binding antibody thresholds could serve as surrogate markers of neutralising capacity, but whether these thresholds predict sufficient neutralising capacity against variants of concern (VOCs), and whether this is impacted by vaccine or infection history remains unclear. Here we analyse individuals recovered from, vaccinated or with hybrid immunity against SARS-CoV-2. An NT50 ≥ 100 IU confers protection in vaccine trials, however, as VOC induce a reduction in NT50, we use NT50 ≥ 1000 IU as a cut off for WT NT50 that would retain neutralisation against VOC. In unvaccinated convalescent participants, a receptor binding domain (RBD) IgG of 456 BAU/mL predicts an NT50 against WT of 1000 IU with an accuracy of 80% (95%CI 73-86%). This threshold maintains accuracy in determining loss of protective immunity against VOC in two vaccinated cohorts. It predicts an NT50 < 100 IU against Beta with an accuracy of 80% (95%CI 67-89%) in 2 vaccine dose recipients. In booster vaccine recipients with a history of COVID-19 (hybrid immunity), accuracy is 87% (95%CI 77-94%) in determining an NT50 of <100 IU against BA.5. This analysis provides a discrete threshold that could be used in future clinical studies.


COVID-19 , Vaccines , Humans , SARS-CoV-2 , COVID-19/prevention & control , Antibodies, Viral , Immunoglobulin G , Antibodies, Neutralizing
2.
PLoS One ; 18(11): e0294262, 2023.
Article En | MEDLINE | ID: mdl-38033116

Quantifying neutralising capacity of circulating SARS-COV-2 antibodies is critical in evaluating protective humoral immune responses generated post-infection/post-vaccination. Here we describe a novel medium-throughput flow cytometry-based micro-neutralisation test to evaluate Neutralising Antibody (NAb) responses against live SARS-CoV-2 Wild Type and Variants of Concern (VOC) in convalescent/vaccinated populations. Flow Cytometry-Based Micro-Neutralisation Test (Micro-NT) was performed in 96-well plates using clinical isolates WT-B, WT-B.1.177.18 and/or VOCs Beta and Omicron. Plasma samples (All Ireland Infectious Diseases (AIID) Cohort) were serially diluted (8 points, half-log) from 1:20 and pre-incubated with SARS-CoV-2 (1h, 37°C). Virus-plasma mixture were added onto Vero E6 or Vero E6/TMPRSS2 cells for 18h. Percentage infected cells was analysed by automated flow cytometry following trypsinisation, fixation and SARS-CoV-2 Nucleoprotein intracellular staining. Half-maximal Neutralisation Titres (NT50) were determined using non-linear regression. Our assay was compared to Plaque Reduction Neutralisation Test (PRNT) and validated against the First WHO International Standard for anti-SARS-CoV-2 immunoglobulin. Both Micro-NT and PRNT achieved comparable NT50 values. Further validation showed adequate correlation with PRNT using a panel of secondary standards of clinical convalescent and vaccinated plasma samples. We found the assay to be reproducible through measuring both repeatability and intermediate precision. Screening 190 convalescent samples and 11 COVID-19 naive controls (AIID cohort) we demonstrated that Micro-NT has broad dynamic range differentiating NT50s <1/20 to >1/5000. We could also characterise immune-escape VOC Beta and Omicron BA.5, achieving fold-reductions in neutralising capacity similar to those published. Our flow cytometry-based Micro-NT is a robust and reliable assay to quantify NAb titres, and has been selected as an endpoint in clinical trials.


COVID-19 , Vaccines , Humans , Flow Cytometry , SARS-CoV-2 , Neutralization Tests , Antibodies, Neutralizing , Antibodies, Viral
3.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Article En | MEDLINE | ID: mdl-34507983

Arthritogenic alphaviruses are globally distributed, mosquito-transmitted viruses that cause rheumatological disease in humans and include Chikungunya virus (CHIKV), Mayaro virus (MAYV), and others. Although serological evidence suggests that some antibody-mediated heterologous immunity may be afforded by alphavirus infection, the extent to which broadly neutralizing antibodies that protect against multiple arthritogenic alphaviruses are elicited during natural infection remains unknown. Here, we describe the isolation and characterization of MAYV-reactive alphavirus monoclonal antibodies (mAbs) from a CHIKV-convalescent donor. We characterized 33 human mAbs that cross-reacted with CHIKV and MAYV and engaged multiple epitopes on the E1 and E2 glycoproteins. We identified five mAbs that target distinct regions of the B domain of E2 and potently neutralize multiple alphaviruses with differential breadth of inhibition. These broadly neutralizing mAbs (bNAbs) contain few somatic mutations and inferred germline-revertants retained neutralizing capacity. Two bNAbs, DC2.M16 and DC2.M357, protected against both CHIKV- and MAYV-induced musculoskeletal disease in mice. These findings enhance our understanding of the cross-reactive and cross-protective antibody response to human alphavirus infections.


Alphavirus Infections/immunology , Antibodies, Monoclonal/isolation & purification , Broadly Neutralizing Antibodies/immunology , Alphavirus/immunology , Alphavirus/pathogenicity , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Arthritis/etiology , Arthritis/immunology , Arthritis/virology , Broadly Neutralizing Antibodies/isolation & purification , Broadly Neutralizing Antibodies/pharmacology , Chikungunya Fever/virology , Chikungunya virus/immunology , Chikungunya virus/pathogenicity , Cross Reactions , Epitopes/immunology , Germ Cells/immunology , Glycoproteins/immunology , Humans , Male , Mice , Mice, Inbred C57BL
4.
ACS Omega ; 6(17): 11367-11374, 2021 May 04.
Article En | MEDLINE | ID: mdl-34056292

Protein kinase R (PKR) is a key pattern recognition receptor of the innate immune pathway. PKR is activated by double-stranded RNA (dsRNA) that is often produced during viral genome replication and transcription. PKR contains two tandem double-stranded RNA binding domains at the N-terminus, dsRBD1 and dsRBD2, and a C-terminal kinase domain. In the canonical model for activation, RNAs that bind multiple PKRs induce dimerization of the kinase domain that promotes an active conformation. However, there is evidence that dimerization of the kinase domain is not sufficient to mediate activation and PKR activation is modulated by the RNA-binding mode. dsRBD2 lacks most of the consensus RNA-binding residues, and it has been suggested to function as a modulator of PKR activation. Here, we demonstrate that dsRBD2 regulates PKR activation and identify the N-terminal helix as a critical region for modulating kinase activity. Mutations in dsRBD2 that have minor effects on overall dsRNA-binding affinity strongly inhibit the activation of PKR by dsRNA. These mutations also inhibit RNA-independent PKR activation. These data support a model where dsRBD2 has evolved to function as a regulator of the kinase.

...