Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 63(3): 1575-1588, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38198518

RESUMEN

We present the synthesis and characterization of a series of Mn(III), Co(III), and Ni(II) complexes with cross-bridge cyclam derivatives (CB-cyclam = 1,4,8,11-tetraazabicyclo[6.6.2]hexadecane) containing acetamide or acetic acid pendant arms. The X-ray structures of [Ni(CB-TE2AM)]Cl2·2H2O and [Mn(CB-TE1AM)(OH)](PF6)2 evidence the octahedral coordination of the ligands around the Ni(II) and Mn(III) metal ions, with a terminal hydroxide ligand being coordinated to Mn(III). Cyclic voltammetry studies on solutions of the [Mn(CB-TE1AM)(OH)]2+ and [Mn(CB-TE1A)(OH)]+ complexes (0.15 M NaCl) show an intricate redox behavior with waves due to the MnIII/MnIV and MnII/MnIII pairs. The Co(III) and Ni(II) complexes with CB-TE2A and CB-TE2AM show quasi-reversible features due to the CoIII/CoII or NiII/NiIII pairs. The [Co(CB-TE2AM)]3+ complex is readily reduced by dithionite in aqueous solution, as evidenced by 1H NMR studies, but does not react with ascorbate. The [Mn(CB-TE1A)(OH)]+ complex is however reduced very quickly by ascorbate following a simple kinetic scheme (k0 = k1[AH-], where [AH-] is the ascorbate concentration and k1 = 628 ± 7 M-1 s-1). The reduction of the Mn(III) complex to Mn(II) by ascorbate provokes complex dissociation, as demonstrated by 1H nuclear magnetic relaxation dispersion studies. The [Ni(CB-TE2AM)]2+ complex shows significant chemical exchange saturation transfer effects upon saturation of the amide proton signals at 71 and 3 ppm with respect to the bulk water signal.

2.
Nat Chem ; 15(6): 755-763, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37264100

RESUMEN

The development of hyperpolarized bioresponsive probes for magnetic resonance imaging (MRI) applications is an emerging and rapidly growing topic in chemistry. A wide range of hyperpolarized molecular biosensors for functional MRI have been developed in recent years. These probes comprise many different types of small-molecule reporters that can be hyperpolarized using dissolution dynamic nuclear polarization and parahydrogen-induced polarization or xenon-chelated macromolecular conjugates hyperpolarized using spin-exchange optical pumping. In this Perspective, we discuss how the amplified magnetic resonance signals of these agents are responsive to biologically relevant stimuli such as target proteins, reactive oxygen species, pH or metal ions. We examine how functional MRI using these systems allows a great number of biological processes to be monitored rapidly. Consequently, hyperpolarized bioresponsive probes may play a critical role in functional molecular imaging for observing physiology and pathology in real time.


Asunto(s)
Imagen por Resonancia Magnética , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos
3.
Inorg Chem ; 61(41): 16256-16265, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36007145

RESUMEN

Zn ions (Zn2+) play an important biological role in many diseases; hence, an imaging method for monitoring the Zn2+ distribution in tissues could provide important clinical insights. Recently, we reported a potent Zn-sensitive probe based on the Gd-DO3A (DO3A = 1,4,7,10-tetraazacyclododecane-1,4,7-tricarboxylic acid), modified tyrosine. and di(2-picolyl)amine chelator for this metal cation, which generates an outstanding magnetic resonance imaging (MRI) response. Here we further explored the origin of this unprecedented response and expanded the choice of potential MRI probes by preparing the free acid version of the initial MRI sensor. We report a detailed investigation of the 1H NMR dispersion, 17O NMR, and isothermal titration calorimetry properties of these two MRI probes upon interaction with Zn2+. The performed experiments confirm selective interaction of the MRI probes and target metal cation, which causes substantial changes in the coordination sphere of the paramagnetic center. It also evidenced some aggregation, which enhances the relaxivity response. Interestingly, conversion of the methyl ester to the free carboxylic acid of the tyrosine moiety changes the nature of the aggregates and leads to a smaller relaxivity response. The probes interact with human serum albumin (HSA) in the absence of Zn2+, which leads to a possible modification of the coordination sphere of Gd3+ or a substantial change in the exchange rate of second-sphere water molecules. In the presence of Zn2+, the interaction with HSA is very weak, demonstrating the importance of the Zn2+ coordination sphere in the behavior of these systems.


Asunto(s)
Gadolinio , Zinc , Aminas , Ácidos Carboxílicos , Quelantes/química , Medios de Contraste/química , Medios de Contraste/farmacología , Ésteres , Gadolinio/química , Humanos , Iones , Imagen por Resonancia Magnética/métodos , Albúmina Sérica Humana , Ácidos Tricarboxílicos , Tirosina , Agua/química , Zinc/química
4.
Chemistry ; 28(57): e202201780, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-35853826

RESUMEN

In this work the chemistry of yttrium complexes is exploited for small molecule capture and activation. Nuclear magnetic resonance (NMR) and density functional theory (DFT) studies were used to investigate the in situ formation of solution state ternary yttrium-acetate, yttrium-bicarbonate, and yttrium-pyruvate adducts with a range of polyaminocarboxylate chelates. These studies reveal that [Y(DO3A)(H2 O)2 ] (H3 DO3A - 1,4,7,10-tetraazacyclododecane-1,4,7-tricarboxylic acid) and [Y(EDTA)(H2 O)q ]- (H4 EDTA - ethylenediaminetetraacetic acid, q = 2 and 3) are able to form ternary adducts with bicarbonate and pyruvate. In the latter, unusual decarboxylation of pyruvate to form acetic acid and CO2 was observed and further studied using SABRE-hyperpolarised 13 C NMR (SABRE - signal amplification by reversible exchange) to provide information about the reaction timescale and lifetime of intermediates involved in this conversion. The work presented demonstrates that yttrium complexes can capture and activate small molecules, which may lead to novel and useful applications of this metal in catalysis and medical imaging.


Asunto(s)
Bicarbonatos , Itrio , Dióxido de Carbono , Ácido Edético , Piruvatos , Ácidos Tricarboxílicos , Itrio/química
6.
Dalton Trans ; 51(4): 1580-1593, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-34991150

RESUMEN

We report the synthesis of the macrocyclic ligands 3,9-PC2AMH (2,2'-(3,6,9-triaza-1(2,6)-pyridinacyclodecaphane-3,9-diyl)diacetamide) and 3,9-PC2AMtBu (2,2'-(3,6,9-triaza-1(2,6)-pyridinacyclodecaphane-3,9-diyl)bis(N-tert-butyl)acetamide) which contain a pyclen platform functionalized with acetamide or tert-butylacetamide pendant arms at positions 3 and 9 of the macrocyclic unit. The corresponding Co(II) and Ni(II) complexes were prepared, isolated and characterised as potential paramagnetic chemical exchange saturation transfer (paraCEST) agents. The X-ray structures of the Ni(II) complexes reveal six-coordination of the ligands to the metal ion. The Co(II) complex with 3,9-PC2AMtBu shows a similar six-coordinate structure in the solid state, while the Co(II) complex with 3,9-PC2AMH contains a seven-coordinate metal ion, seventh coordination being completed by the presence of an inner-sphere water molecule. The structure of the Co(II) complexes was investigated using 1H NMR spectroscopy and computational methods. The complexes present a seven-coordinate structure in solution, as demonstrated by the analysis of the paramagnetic shifts using density functional theory. Ligand protonation constants and stability constants of the complexes with 3,9-PC2AMH were determined using potentiometric titrations (I = 0,15 M NaCl). The Co(II) complex was found to be more stable than the Ni(II) analogue (log KCoL = 14.46(5) and log KNiL = 13.15(3)). However, the Ni(II) and Co(II) complexes display similar rate constants characterizing the proton-assisted dissociation mechanism. The presence of highly shifted 1H NMR signals due to the amide protons in slow exchange with bulk water results in sizeable CEST signals, which are observed at +67 and +15 ppm for the Co(II) complex with 3,9-PC2AMH and +42 and +7 ppm for the Ni(II) analogue at 25 °C.

7.
J Chem Phys ; 155(14): 144203, 2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34654311

RESUMEN

The efficacy in 1H Overhauser dynamic nuclear polarization in liquids at ultralow magnetic field (ULF, B0 = 92 ± 0.8 µT) and polarization field (Bp = 1-10 mT) was studied for a broad variety of 26 different spin probes. Among others, piperidine, pyrrolidine, and pyrroline radicals specifically synthesized for this study, along with some well-established commercially available nitroxides, were investigated. Isotope-substituted variants, some sterically shielded reduction-resistant nitroxides, and some biradicals were included in the measurements. The maximal achievable enhancement, Emax, and the radio frequency power, P1/2, needed for reaching Emax/2 were measured. Physico-chemical features such as molecular weight, spectral linewidth, heterocyclic structure, different types of substituents, deuteration, and 15N-labeling as well as the difference between monoradicals and biradicals were investigated. For the unmodified nitroxide radicals, the Emax values correlate with the molecular weight. The P1/2 values correlate with the spectral linewidth and are additionally influenced by the type of substituents neighboring the nitroxide group. The nitroxide biradicals with high intramolecular spin-spin coupling show low performance. Nitroxides enriched with 15N and/or 2H afford significantly higher |Emax| and require lower power to do so, compared to their unmodified counterparts containing at natural abundance predominantly 14N and 1H. The results allow for a correlation of chemical features with physical hyperpolarization-related properties and indicate that small nitroxides with narrow spectral lines have clear advantages for the use in Overhauser dynamic nuclear polarization experiments. Perdeuteration and 15N-labeling can be used to additionally boost the spin probe performance.

8.
J Med Chem ; 64(11): 7565-7574, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-33961422

RESUMEN

The relevance of MRI as a diagnostic methodology has been expanding significantly with the development of molecular imaging. Partially, the credit for this advancement is due to the increasing potential and performance of targeted MRI contrast agents, which are able to specifically bind distinct receptors or biomarkers. Consequently, these allow for the identification of tissues undergoing a disease, resulting in the over- or underexpression of the particular molecular targets. Here we report a multimeric molecular probe, which combines the established targeting properties of the Arg-Gly-Asp (RGD) peptide sequence toward the integrins with three calcium-responsive, Gd-based paramagnetic moieties. The bifunctional probe showed excellent 1H MRI contrast enhancement upon Ca2+ coordination and demonstrated a longer retention time in the tissue due to the presence of the RGD moiety. The obtained results testify to the potential of combining bioresponsive contrast agents with targeting vectors to develop novel functional molecular imaging methods.


Asunto(s)
Medios de Contraste/química , Integrinas/metabolismo , Oligopéptidos/química , Animales , Calcio/metabolismo , Quelantes del Calcio/química , Gadolinio/química , Integrinas/química , Imagen por Resonancia Magnética , Magnetismo , Masculino , Microscopía Fluorescente , Oligopéptidos/síntesis química , Oligopéptidos/metabolismo , Ratas , Ratas Sprague-Dawley , Corteza Somatosensorial/diagnóstico por imagen
9.
Dalton Trans ; 50(7): 2448-2461, 2021 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-33507194

RESUMEN

The design of molecules whose magnetic resonance (MR) signals report on their biological environment is receiving attention as a route to non-invasive functional MR. Hyperpolarisation techniques improve the sensitivity of MR and enable real time low concentration MR imaging, allowing for the development of novel functional imaging methodologies. In this work, we report on the synthesis of a series of EGTA-derived molecules (EGTA - ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid), whose core structures are known to bind biologically relevant metal ions in vivo, in addition to pyridyl rings that allow reversible ligation to an iridium dihydride complex. Consequently, they are amenable to hyperpolarisation through the parahydrogen-based signal amplification by reversible exchange (SABRE) process. We investigate how the proximity of EGTA and pyridine units, and the identity of the linker group, affect the SABRE hyperpolarisation attained for each agent. We also describe the effect of catalyst identity and co-ligand presence on these measurements and can achieve 1H NMR signal enhancements of up to 160-fold. We rationalise these results to suggest the design elements needed for probes amenable to SABRE hyperpolarisation whose MR signals might in the future report on the presence of metal ions.

10.
Inorg Chem ; 60(3): 1902-1914, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33471999

RESUMEN

We report a detailed investigation of the coordination properties of macrocyclic lanthanide complexes containing a 3,6,10,13-tetraaza-1,8(2,6)-dipyridinacyclotetradecaphane scaffold functionalized with four acetamide pendant arms. The X-ray structures of the complexes with the large Ln3+ ions (La and Sm) display 12- and 10-coordinated metal ions, where the coordination sphere is fulfilled by the six N atoms of the macrocycle, the four O atoms of the acetamide pendants, and a bidentate nitrate anion in the La3+ complex. The analogous Yb3+ complex presents, however, a 9-coordinated metal ion because one of the acetamide pendant arms remains uncoordinated. 1H NMR studies indicate that the 10-coordinated form is present in solution throughout the lanthanide series from La to Tb, while the smaller lanthanides form 9-coordinated species. 1H and 89Y NMR studies confirm the presence of this structural change because the two species are present in solution. Analysis of the 1H chemical shifts observed for the Tb3+ complex confirms its D2 symmetry in aqueous solution and evidences a highly rhombic magnetic susceptibility tensor. The acetamide resonances of the Pr3+ and Tb3+ complexes provided sizable paraCEST effects, as demonstrated by the corresponding Z-spectra recorded at different temperatures and studies on tube phantoms recorded at 22 °C.

11.
Angew Chem Int Ed Engl ; 60(11): 5734-5738, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33226707

RESUMEN

Zinc ions play an important role in numerous crucial biological processes in the human body. The ability to image the function of Zn2+ would be a significant asset to biomedical research for monitoring various physiopathologies dependent on its fate. To this end, we developed a novel Gd3+ chelate that can selectively recognize Zn2+ over other abundant endogenous metal ions and alter its paramagnetic properties. More specifically, this lanthanide chelate displayed an extraordinary increase in longitudinal relaxivity (r1 ) of over 400 % upon interaction with Zn2+ at 7 T and 25 °C, which is the greatest r1 enhancement observed for any of the metal ion-responsive Gd-based complexes at high magnetic field. A "turn-on" mechanism responsible for these massive changes was confirmed through NMR and luminescence lifetime studies on a 13 C-labeled Eu3+ analogue. This molecular platform represents a new momentum in developing highly suitable magnetic resonance imaging contrast agents for functional molecular imaging studies of Zn2+ .


Asunto(s)
Quelantes/química , Medios de Contraste/química , Imagen por Resonancia Magnética , Zinc/análisis , Quelantes/síntesis química , Medios de Contraste/síntesis química , Gadolinio/química , Iones/análisis , Conformación Molecular , Imagen Molecular
12.
Molecules ; 25(21)2020 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-33138207

RESUMEN

Bridged polymacrocyclic ligands featured by structurally different cages offer the possibility of coordinating multiple trivalent lanthanide ions, giving rise to the exploitation of their different physicochemical properties, e.g., multimodal detection for molecular imaging purposes. Intrigued by the complementary properties of optical and MR-based image capturing modalities, we report the synthesis and characterization of the polymetallic Ln(III)-based chelate comprised of two DOTA-amide-based ligands (DOTA-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) bridged via 1,10-diaza-18-crown-6 (DA18C6) motif. The DOTA-amide moieties and the DA18C6 were used to chelate two Eu(III) ions and one Tb(III) ion, respectively, resulting in a multinuclear heterometallic complex Eu2LTb. The bimetallic complex without Tb(III), Eu2L, displayed a strong paramagnetic chemical exchange saturation transfer (paraCEST) effect. Notably, the luminescence spectra of Eu2LTb featured mixed emission including the characteristic bands of Eu(III) and Tb(III). The advantageous features of the complex Eu2LTb opens new possibilities for the future design of bimodal probes and their potential applicability in CEST MR and optical imaging.


Asunto(s)
Quelantes , Medios de Contraste , Éteres Corona/química , Imagen Molecular , Sondas Moleculares , Quelantes/síntesis química , Quelantes/química , Medios de Contraste/síntesis química , Medios de Contraste/química , Sondas Moleculares/síntesis química , Sondas Moleculares/química
13.
Chem Soc Rev ; 49(17): 6169-6185, 2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32701076

RESUMEN

Yttrium is a chemically versatile rare earth element that finds use in a range of applications including lasers and superconductors. In medicine, yttrium-based materials are used in medical lasers and biomedical implants. This is extended through the array of available yttrium isotopes to enable roles for 90Y complexes as radiopharmaceuticals and 86Y tracers for positron emission tomography (PET) imaging. The naturally abundant isotope 89Y is proving to be suitable for nuclear magnetic resonance investigations, where initial reports in the emerging field of hyperpolarised magnetic resonance imaging (MRI) are promising. In this review we explore the coordination and radiochemical properties of yttrium, and its role in drugs for radiotherapy, PET imaging agents and perspectives for applications in hyperpolarised MRI.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Tomografía de Emisión de Positrones/métodos , Itrio/farmacología , Humanos , Radiofármacos , Itrio/química
14.
Chem Commun (Camb) ; 56(66): 9433-9436, 2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32687130

RESUMEN

We developed a nanosized perfluorocarbon-based system with incorporated paramagnetic Gd(iii) chelates, able to generate a quantitative 19F MRI signal, while in parallel capable of modulating the 1H MRI signal in response to the coordination of Ca2+ ions. Subsequently, we performed experiments in vivo and estimated the concentration of the applied probe in the tissue by means of 19F MRI.


Asunto(s)
Medios de Contraste/química , Lípidos/química , Nanopartículas/química , Animales , Calcio/química , Quelantes/química , Imagen por Resonancia Magnética con Fluor-19 , Fluorocarburos/química , Gadolinio/química , Iones/química , Magnetismo , Ratas , Corteza Somatosensorial/diagnóstico por imagen
15.
Inorg Chem ; 59(12): 8184-8195, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32356996

RESUMEN

We report a detailed study of the thermodynamic stability and dissociation kinetics of lanthanide complexes with two ligands containing a cyclen unit, a methyl group, a picolinate arm, and two acetate pendant arms linked to two nitrogen atoms of the macrocycle in either cis (1,4-H3DO2APA) or trans (1,7-H3DO2APA) positions. The stability constants of the Gd3+ complexes with these two ligands are very similar, with log KGdL values of 16.98 and 16.33 for the complexes of 1,4-H3DO2APA and 1,7-H3DO2APA, respectively. The stability constants of complexes with 1,4-H3DO2APA follow the usual trend, increasing from log KLaL = 15.96 to log KLuL = 19.21. However, the stability of [Ln(1,7-DO2APA)] complexes decreases from log K = 16.33 for Gd3+ to 14.24 for Lu3+. The acid-catalyzed dissociation rates of the Gd3+ complexes differ by a factor of ∼15, with rate constants (k1) of 1.42 and 23.5 M-1 s-1 for [Gd(1,4-DO2APA)] and [Gd(1,7-DO2APA)], respectively. This difference is magnified across the lanthanide series to reach a 5 orders of magnitude higher k1 for [Yb(1,7-DO2APA)] (1475 M-1 s-1) than for [Yb(1,4-DO2APA)] (5.79 × 10-3 M-1 s-1). The acid-catalyzed mechanism involves the protonation of a carboxylate group, followed by a cascade of proton-transfer events that result in the protonation of a nitrogen atom of the cyclen unit. Density functional theory calculations suggest a correlation between the strength of the Ln-Ocarboxylate bonds and the kinetic inertness of the complex, with stronger bonds providing more inert complexes. The 1H NMR resonance of the coordinated water molecule in the [Yb(1,7-DO2APA)] complex at 176 ppm provides a sizable chemical exchange saturation transfer effect thanks to a slow water exchange rate of (15.9 ± 1.6) × 103 s-1.

16.
Chempluschem ; 85(5): 796, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32293103

RESUMEN

Invited for this month's cover are the collaborating groups of Dr. Goran Angelovski from the Max Planck Institute for Biological Cybernetics in Tuebingen, Germany and Prof. Carlos Platas-Iglesias from Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña, Spain. The cover image shows chameleon-like molecules whose luminescence emission can be enhanced selectively and strongly by the coordination of zinc(II) ions. Read the full text of the article at 10.1002/cplu.201900731.


Asunto(s)
Europio , Luminiscencia , Aminas , Iones , España , Tirosina , Zinc
17.
Molecules ; 25(7)2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32276437

RESUMEN

Four albumin-nitroxide conjugates were prepared and tested as metal-free organic radical contrast agents (ORCAs) for magnetic resonance imaging (MRI). Each human serum albumin (HSA) carrier bears multiple nitroxides conjugated via homocysteine thiolactones. These molecular conjugates retain important physical and biological properties of their HSA component, and the resistance of their nitroxide groups to bioreduction was retained or enhanced. The relaxivities are similar for these four conjugates and are much greater than those of their individual components: the HSA or the small nitroxide molecules. This new family of conjugates has excellent prospects for optimization as ORCAs.


Asunto(s)
Medios de Contraste/química , Imagen por Resonancia Magnética , Óxidos de Nitrógeno/química , Albúmina Sérica Humana/química , Coloración y Etiquetado , Ácidos Carboxílicos/química , Muerte Celular , Espectroscopía de Resonancia por Spin del Electrón , Homocisteína/análogos & derivados , Homocisteína/química , Humanos , Cinética , Óxidos de Nitrógeno/síntesis química , Fantasmas de Imagen , Estructura Secundaria de Proteína
18.
Chem Commun (Camb) ; 56(24): 3492-3495, 2020 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-32129333

RESUMEN

We present a method for assessing the extracellular calcium concentration using 19F chemical shift imaging. Specifically, a custom made calcium-responsive and lanthanide-based 19F MRI probe that undergoes a strong and highly specific modulation of its signal upon coordination with calcium ions was developed and its performance is presented.


Asunto(s)
Calcio/análisis , Flúor , Elementos de la Serie de los Lantanoides , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética
19.
J Mater Chem B ; 8(5): 969-979, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-31930247

RESUMEN

Different classes of small- or nano-sized calcium-sensitive probes for magnetic resonance imaging (MRI) have been proposed in the last two decades. These compounds have been developed mainly for functional MRI purposes and tested in vivo in different animal models. Most of them are paramagnetic systems that change their relaxivity in the presence of the divalent ion calcium, resulting in increased T1 or T2 contrast. In this work, we report the investigation of their relaxometric behavior at low magnetic fields, specifically the comparison of the monomeric Ca-sensitive probe and the corresponding dendrimer conjugates of generations 0, 1 and 2 (G0, G1 and G2, respectively). As a result, a relaxivity hump between 10 and 100 MHz of the Larmor frequency progressively appeared with an increase in the size of the investigated contrast agent, indicative of a restricted rotational motion of the complexes as long as the size of the molecule increases. The same trend with a more pronounced effect was detectable in the presence of calcium. The relaxivity enhancement for the Ca2+ adducts, primarily caused by an increase of the hydration state of Gd3+, went from ca. 130% for the monomeric probe to ca. 310% for the G2 dendrimer conjugate at 0.5 T and 25 °C. T1 weighted magnetic resonance images acquired at 1 T displayed the strong ability of these systems to change their contrast according to the presence of calcium at this field, thus laying the basis for promising future in vivo applications.


Asunto(s)
Calcio/química , Medios de Contraste/química , Dendrímeros/química , Imagen por Resonancia Magnética , Medios de Contraste/síntesis química , Dendrímeros/síntesis química , Gadolinio/química , Ensayo de Materiales , Estructura Molecular , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
20.
Chempluschem ; 85(5): 806-814, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31967740

RESUMEN

Zinc ions play an important role in many biological processes in the human body. To selectively detect Zn2+ , two EuDO3A-based complexes (DO3A=1,4,7,10-tetraazacyclododecane-1,4,7-tricarboxylic acid) appended with tyrosine as a chromophore and di-(2-picolyl)amine (DPA) as the Zn2+ recognition moiety were developed as suitable luminescent sensors. Their luminescence intensity is affected by the photoinduced electron transfer mechanism. Upon addition of Zn2+ , both probes display an up to sevenfold enhancement in Eu3+ emission. Competition experiments demonstrated their specificity toward Zn2+ over other metal ions, while also revealing the nonspecificity of the derivatives lacking the DPA-moiety, thus confirming the essential role of the DPA for the recognition of Zn2+ . The induced emission changes of Eu3+ allow for precise quantitative analysis of Zn2+ , establishing these lanthanide-based complexes as viable chemosensors for biological applications.


Asunto(s)
Aminas/química , Quelantes/química , Europio/química , Mediciones Luminiscentes/métodos , Tirosina/química , Zinc/análisis , Complejos de Coordinación/química , Teoría Funcional de la Densidad , Concentración de Iones de Hidrógeno , Iones/química , Ligandos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...