Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 5: 5313, 2014 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-25387577

RESUMEN

DOT1 enzymes are conserved methyltransferases that catalyse the methylation of lysine 79 on histone H3 (H3K79). Most eukaryotes contain one DOT1 enzyme, whereas African trypanosomes have two homologues, DOT1A and DOT1B, with different enzymatic activities. DOT1A mediates mono- and dimethylation of H3K76, the homologue of H3K79 in other organisms, whereas DOT1B additionally catalyses H3K76 trimethylation. However, it is unclear how these different enzymatic activities are achieved. Here we employ a trypanosomal nucleosome reconstitution system and structure-guided homology modelling to identify critical residues within and outside the catalytic centre that modulate product specificity. Exchange of these residues transfers the product specificity from one enzyme to the other, and reveals the existence of distinct regulatory domains adjacent to the catalytic centre. Our study provides the first evidence that a few crucial residues in DOT1 enzymes are sufficient to catalyse methyl-state-specific reactions. These results might also have far-reaching consequences for the functional understanding of homologous enzymes in higher eukaryotes.


Asunto(s)
Análisis Mutacional de ADN , N-Metiltransferasa de Histona-Lisina/fisiología , Secuencia de Aminoácidos , Análisis Mutacional de ADN/métodos , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Metilación , Datos de Secuencia Molecular , Nucleosomas/metabolismo , Homología de Secuencia , Relación Estructura-Actividad , Especificidad por Sustrato/genética , Especificidad por Sustrato/fisiología , Trypanosoma brucei brucei/enzimología , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
2.
Nature ; 497(7447): 80-5, 2013 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-23636399

RESUMEN

Protein synthesis in all cells is carried out by macromolecular machines called ribosomes. Although the structures of prokaryotic, yeast and protist ribosomes have been determined, the more complex molecular architecture of metazoan 80S ribosomes has so far remained elusive. Here we present structures of Drosophila melanogaster and Homo sapiens 80S ribosomes in complex with the translation factor eEF2, E-site transfer RNA and Stm1-like proteins, based on high-resolution cryo-electron-microscopy density maps. These structures not only illustrate the co-evolution of metazoan-specific ribosomal RNA with ribosomal proteins but also reveal the presence of two additional structural layers in metazoan ribosomes, a well-ordered inner layer covered by a flexible RNA outer layer. The human and Drosophila ribosome structures will provide the basis for more detailed structural, biochemical and genetic experiments.


Asunto(s)
Drosophila melanogaster/química , Ribosomas/química , Ribosomas/ultraestructura , Animales , Microscopía por Crioelectrón , Proteínas de Unión al ADN/química , Drosophila melanogaster/ultraestructura , Células Eucariotas , Evolución Molecular , Humanos , Modelos Moleculares , Conformación Molecular , Peso Molecular , Factor 2 de Elongación Peptídica/metabolismo , ARN Ribosómico/química , ARN Ribosómico/metabolismo , ARN Ribosómico/ultraestructura , ARN de Transferencia/química , ARN de Transferencia/metabolismo , ARN de Transferencia/ultraestructura , Proteínas Ribosómicas/química , Proteínas Ribosómicas/aislamiento & purificación , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/ultraestructura , Subunidades Ribosómicas/química , Subunidades Ribosómicas/metabolismo , Subunidades Ribosómicas/ultraestructura , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/química
3.
Nucleic Acids Res ; 41(2): 1284-93, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23222135

RESUMEN

In all living cells, protein synthesis occurs on ribonucleoprotein particles called ribosomes. Molecular models have been reported for complete bacterial 70S and eukaryotic 80S ribosomes; however, only molecular models of large 50S subunits have been reported for archaea. Here, we present a complete molecular model for the Pyrococcus furiosus 70S ribosome based on a 6.6 Å cryo-electron microscopy map. Moreover, we have determined cryo-electron microscopy reconstructions of the Euryarchaeota Methanococcus igneus and Thermococcus kodakaraensis 70S ribosomes and Crenarchaeota Staphylothermus marinus 50S subunit. Examination of these structures reveals a surprising promiscuous behavior of archaeal ribosomal proteins: We observe intersubunit promiscuity of S24e and L8e (L7ae), the latter binding to the head of the small subunit, analogous to S12e in eukaryotes. Moreover, L8e and L14e exhibit intrasubunit promiscuity, being present in two copies per archaeal 50S subunit, with the additional binding site of L14e analogous to the related eukaryotic r-protein L27e. Collectively, these findings suggest insights into the evolution of eukaryotic ribosomal proteins through increased copy number and binding site promiscuity.


Asunto(s)
Proteínas Arqueales/química , Proteínas Ribosómicas/química , Ribosomas/química , Proteínas Arqueales/clasificación , Sitios de Unión , Microscopía por Crioelectrón , Desulfurococcaceae/química , Eucariontes/química , Euryarchaeota/química , Evolución Molecular , Modelos Moleculares , Pyrococcus furiosus/química , Proteínas Ribosómicas/clasificación , Subunidades Ribosómicas Grandes de Archaea/química
4.
Nature ; 482(7386): 501-6, 2012 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-22358840

RESUMEN

Ribosome-driven protein biosynthesis is comprised of four phases: initiation, elongation, termination and recycling. In bacteria, ribosome recycling requires ribosome recycling factor and elongation factor G, and several structures of bacterial recycling complexes have been determined. In the eukaryotic and archaeal kingdoms, however, recycling involves the ABC-type ATPase ABCE1 and little is known about its structural basis. Here we present cryo-electron microscopy reconstructions of eukaryotic and archaeal ribosome recycling complexes containing ABCE1 and the termination factor paralogue Pelota. These structures reveal the overall binding mode of ABCE1 to be similar to canonical translation factors. Moreover, the iron-sulphur cluster domain of ABCE1 interacts with and stabilizes Pelota in a conformation that reaches towards the peptidyl transferase centre, thus explaining how ABCE1 may stimulate peptide-release activity of canonical termination factors. Using the mechanochemical properties of ABCE1, a conserved mechanism in archaea and eukaryotes is suggested that couples translation termination to recycling, and eventually to re-initiation.


Asunto(s)
Evolución Molecular , Pyrococcus furiosus/química , Ribosomas/química , Ribosomas/metabolismo , Saccharomyces cerevisiae/química , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Microscopía por Crioelectrón , Endorribonucleasas/química , Endorribonucleasas/metabolismo , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Modelos Moleculares , Movimiento , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Factores de Terminación de Péptidos/química , Factores de Terminación de Péptidos/metabolismo , Unión Proteica , Estabilidad Proteica , Estructura Terciaria de Proteína , Pyrococcus furiosus/metabolismo , Ribosomas/ultraestructura , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Nat Struct Mol Biol ; 18(6): 715-20, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21623367

RESUMEN

No-go decay (NGD) is a mRNA quality-control mechanism in eukaryotic cells that leads to degradation of mRNAs stalled during translational elongation. The key factors triggering NGD are Dom34 and Hbs1. We used cryo-EM to visualize NGD intermediates resulting from binding of the Dom34-Hbs1 complex to stalled ribosomes. At subnanometer resolution, all domains of Dom34 and Hbs1 were identified, allowing the docking of crystal structures and homology models. Moreover, the close structural similarity of Dom34 and Hbs1 to eukaryotic release factors (eRFs) enabled us to propose a model for the ribosome-bound eRF1-eRF3 complex. Collectively, our data provide structural insights into how stalled mRNA is recognized on the ribosome and how the eRF complex can simultaneously recognize stop codons and catalyze peptide release.


Asunto(s)
Proteínas de Ciclo Celular/ultraestructura , Endorribonucleasas/ultraestructura , Proteínas de Unión al GTP/ultraestructura , Proteínas HSP70 de Choque Térmico/ultraestructura , Factores de Elongación de Péptidos/ultraestructura , Ribosomas/ultraestructura , Proteínas de Saccharomyces cerevisiae/ultraestructura , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Microscopía por Crioelectrón , Endorribonucleasas/química , Endorribonucleasas/metabolismo , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/metabolismo , Modelos Moleculares , Factores de Elongación de Péptidos/química , Factores de Elongación de Péptidos/metabolismo , Unión Proteica , Estabilidad del ARN , ARN Mensajero/química , ARN Mensajero/metabolismo , Ribosomas/química , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Proc Natl Acad Sci U S A ; 107(46): 19754-9, 2010 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-20974910

RESUMEN

Protein synthesis in all living organisms occurs on ribonucleoprotein particles, called ribosomes. Despite the universality of this process, eukaryotic ribosomes are significantly larger in size than their bacterial counterparts due in part to the presence of 80 r proteins rather than 54 in bacteria. Using cryoelectron microscopy reconstructions of a translating plant (Triticum aestivum) 80S ribosome at 5.5-Å resolution, together with a 6.1-Å map of a translating Saccharomyces cerevisiae 80S ribosome, we have localized and modeled 74/80 (92.5%) of the ribosomal proteins, encompassing 12 archaeal/eukaryote-specific small subunit proteins as well as the complete complement of the ribosomal proteins of the eukaryotic large subunit. Near-complete atomic models of the 80S ribosome provide insights into the structure, function, and evolution of the eukaryotic translational apparatus.


Asunto(s)
Microscopía por Crioelectrón , Células Eucariotas/metabolismo , Células Eucariotas/ultraestructura , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/ultraestructura , Ribosomas/ultraestructura , Evolución Molecular , Modelos Moleculares , Transporte de Proteínas , ARN Ribosómico/química , ARN Ribosómico/genética , ARN Ribosómico/ultraestructura , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Especificidad de la Especie , Triticum/metabolismo
7.
Proc Natl Acad Sci U S A ; 107(46): 19748-53, 2010 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-20980660

RESUMEN

Protein biosynthesis, the translation of the genetic code into polypeptides, occurs on ribonucleoprotein particles called ribosomes. Although X-ray structures of bacterial ribosomes are available, high-resolution structures of eukaryotic 80S ribosomes are lacking. Using cryoelectron microscopy and single-particle reconstruction, we have determined the structure of a translating plant (Triticum aestivum) 80S ribosome at 5.5-Šresolution. This map, together with a 6.1-Šmap of a Saccharomyces cerevisiae 80S ribosome, has enabled us to model ∼98% of the rRNA. Accurate assignment of the rRNA expansion segments (ES) and variable regions has revealed unique ES-ES and r-protein-ES interactions, providing insight into the structure and evolution of the eukaryotic ribosome.


Asunto(s)
Microscopía por Crioelectrón , Células Eucariotas/ultraestructura , Modelos Moleculares , Biosíntesis de Proteínas , ARN Ribosómico/ultraestructura , Ribosomas/química , Ribosomas/ultraestructura , Cristalografía por Rayos X , Escherichia coli/metabolismo , Escherichia coli/ultraestructura , Células Eucariotas/metabolismo , Humanos , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Triticum/metabolismo , Triticum/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA