Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 6220, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37798285

RESUMEN

Calcium in interstitial fluids is central to systemic physiology and a crucial ion pool for entry into cells through numerous plasma membrane channels. Its study has been limited by the scarcity of methods that allow monitoring in tight inter-cell spaces of living tissues. Here we present high performance ultra-low affinity genetically encoded calcium biosensors named GreenT-ECs. GreenT-ECs combine large fluorescence changes upon calcium binding and binding affinities (Kds) ranging from 0.8 mM to 2.9 mM, making them tuned to calcium concentrations in extracellular organismal fluids. We validated GreenT-ECs in rodent hippocampal neurons and transgenic zebrafish in vivo, where the sensors enabled monitoring homeostatic regulation of tissue interstitial calcium. GreenT-ECs may become useful for recording very large calcium transients and for imaging calcium homeostasis in inter-cell structures in live tissues and organisms.


Asunto(s)
Calcio , Pez Cebra , Animales , Calcio/metabolismo , Pez Cebra/metabolismo , Fluorescencia , Señalización del Calcio/fisiología , Diagnóstico por Imagen , Colorantes
2.
Neurophotonics ; 10(4): 044404, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37547562

RESUMEN

Membrane trafficking of post-synaptic cargo is a key determinant of synaptic transmission and synaptic plasticity. We describe here the latest developments in visualizing individual exocytosis and endocytosis events in neurons using pH-sensitive tags. We show how these tools help decipher the spatial and temporal regulation of membrane trafficking steps during synaptic plasticity.

3.
Neuron ; 108(5): 843-860.e8, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-32991831

RESUMEN

Electron microscopy can resolve synapse ultrastructure with nanometer precision, but the capture of time-resolved, activity-dependent synaptic membrane-trafficking events has remained challenging, particularly in functionally distinct synapses in a tissue context. We present a method that combines optogenetic stimulation-coupled cryofixation ("flash-and-freeze") and electron microscopy to visualize membrane trafficking events and synapse-state-specific changes in presynaptic vesicle organization with high spatiotemporal resolution in synapses of cultured mouse brain tissue. With our experimental workflow, electrophysiological and "flash-and-freeze" electron microscopy experiments can be performed under identical conditions in artificial cerebrospinal fluid alone, without the addition of external cryoprotectants, which are otherwise needed to allow adequate tissue preservation upon freezing. Using this approach, we reveal depletion of docked vesicles and resolve compensatory membrane recycling events at individual presynaptic active zones at hippocampal mossy fiber synapses upon sustained stimulation.


Asunto(s)
Potenciales Postsinápticos Excitadores/fisiología , Hipocampo/fisiología , Hipocampo/ultraestructura , Membranas Sinápticas/fisiología , Membranas Sinápticas/ultraestructura , Animales , Técnicas de Sustitución del Gen/métodos , Ratones , Ratones Transgénicos , Microscopía Electrónica/métodos , Microtomía/métodos , Técnicas de Cultivo de Órganos , Transporte de Proteínas/fisiología
5.
Nat Commun ; 11(1): 1906, 2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32312988

RESUMEN

Astrocytic Ca2+ signals can be fast and local, supporting the idea that astrocytes have the ability to regulate single synapses. However, the anatomical basis of such specific signaling remains unclear, owing to difficulties in resolving the spongiform domain of astrocytes where most tripartite synapses are located. Using 3D-STED microscopy in living organotypic brain slices, we imaged the spongiform domain of astrocytes and observed a reticular meshwork of nodes and shafts that often formed loop-like structures. These anatomical features were also observed in acute hippocampal slices and in barrel cortex in vivo. The majority of dendritic spines were contacted by nodes and their sizes were correlated. FRAP experiments and Ca2+ imaging showed that nodes were biochemical compartments and Ca2+ microdomains. Mapping astrocytic Ca2+ signals onto STED images of nodes and dendritic spines showed they were associated with individual synapses. Here, we report on the nanoscale organization of astrocytes, identifying nodes as a functional astrocytic component of tripartite synapses that may enable synapse-specific communication between neurons and astrocytes.


Asunto(s)
Astrocitos/citología , Astrocitos/metabolismo , Señalización del Calcio/fisiología , Sinapsis/metabolismo , Animales , Encéfalo , Calcio/metabolismo , Hipocampo , Imagenología Tridimensional , Masculino , Ratones , Microscopía , Neuronas/metabolismo
6.
Nat Methods ; 16(12): 1263-1268, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31636458

RESUMEN

Super-resolution microscopy offers tremendous opportunities to unravel the complex and dynamic architecture of living cells. However, current super-resolution microscopes are well suited for revealing protein distributions or cell morphology, but not both. We present a super-resolution platform that permits correlative single-molecule imaging and stimulated emission depletion microscopy in live cells. It gives nanoscale access to the positions and movements of synaptic proteins within the morphological context of growth cones and dendritic spines.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Fluorescente/métodos , Imagen Individual de Molécula/métodos , Animales , Células Cultivadas , Femenino , Humanos , Ratones , Ratas , Ratas Sprague-Dawley
7.
Elife ; 72018 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-29932052

RESUMEN

Rewiring neural circuits by the formation and elimination of synapses is thought to be a key cellular mechanism of learning and memory in the mammalian brain. Dendritic spines are the postsynaptic structural component of excitatory synapses, and their experience-dependent plasticity has been extensively studied in mouse superficial cortex using two-photon microscopy in vivo. By contrast, very little is known about spine plasticity in the hippocampus, which is the archetypical memory center of the brain, mostly because it is difficult to visualize dendritic spines in this deeply embedded structure with sufficient spatial resolution. We developed chronic 2P-STED microscopy in mouse hippocampus, using a 'hippocampal window' based on resection of cortical tissue and a long working distance objective for optical access. We observed a two-fold higher spine density than previous studies and measured a spine turnover of ~40% within 4 days, which depended on spine size. We thus provide direct evidence for a high level of structural rewiring of synaptic circuits and new insights into the structure-dynamics relationship of hippocampal spines. Having established chronic super-resolution microscopy in the hippocampus in vivo, our study enables longitudinal and correlative analyses of nanoscale neuroanatomical structures with genetic, molecular and behavioral experiments.


Asunto(s)
Espinas Dendríticas/ultraestructura , Hipocampo/ultraestructura , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Imagen Molecular/métodos , Red Nerviosa/ultraestructura , Células Piramidales/ultraestructura , Sinapsis/ultraestructura , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Corteza Cerebral/cirugía , Espinas Dendríticas/fisiología , Femenino , Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/anatomía & histología , Hipocampo/fisiología , Procesamiento de Imagen Asistido por Computador/estadística & datos numéricos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Memoria/fisiología , Ratones , Ratones Transgénicos , Microscopía de Fluorescencia por Excitación Multifotónica/instrumentación , Imagen Molecular/instrumentación , Red Nerviosa/anatomía & histología , Red Nerviosa/fisiología , Plasticidad Neuronal/fisiología , Células Piramidales/fisiología , Sinapsis/fisiología
9.
Proc Natl Acad Sci U S A ; 114(17): 4513-4518, 2017 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-28396402

RESUMEN

Disruption of neuronal morphology contributes to the pathology of neurodegenerative disorders such as Alzheimer's disease (AD). However, the underlying molecular mechanisms are unknown. Here, we show that postnatal deletion of Cdh1, a cofactor of the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase in neurons [Cdh1 conditional knockout (cKO)], disrupts dendrite arborization and causes dendritic spine and synapse loss in the cortex and hippocampus, concomitant with memory impairment and neurodegeneration, in adult mice. We found that the dendrite destabilizer Rho protein kinase 2 (Rock2), which accumulates in the brain of AD patients, is an APC/CCdh1 substrate in vivo and that Rock2 protein and activity increased in the cortex and hippocampus of Cdh1 cKO mice. In these animals, inhibition of Rock activity, using the clinically approved drug fasudil, prevented dendritic network disorganization, memory loss, and neurodegeneration. Thus, APC/CCdh1-mediated degradation of Rock2 maintains the dendritic network, memory formation, and neuronal survival, suggesting that pharmacological inhibition of aberrantly accumulated Rock2 may be a suitable therapeutic strategy against neurodegeneration.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas Cdh1/metabolismo , Células Dendríticas/fisiología , Regulación de la Expresión Génica/fisiología , Quinasas Asociadas a rho/metabolismo , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/farmacología , Ciclosoma-Complejo Promotor de la Anafase/genética , Animales , Proteínas Cdh1/genética , Supervivencia Celular , Memoria/efectos de los fármacos , Memoria/fisiología , Ratones , Ratones Noqueados , Neuronas/fisiología , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal , Quinasas Asociadas a rho/genética
10.
Proc Natl Acad Sci U S A ; 114(6): 1401-1406, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28115721

RESUMEN

Axons convey information to nearby and distant cells, and the time it takes for action potentials (APs) to reach their targets governs the timing of information transfer in neural circuits. In the unmyelinated axons of hippocampus, the conduction speed of APs depends crucially on axon diameters, which vary widely. However, it is not known whether axon diameters are dynamic and regulated by activity-dependent mechanisms. Using time-lapse superresolution microscopy in brain slices, we report that axons grow wider after high-frequency AP firing: synaptic boutons undergo a rapid enlargement, which is mostly transient, whereas axon shafts show a more delayed and progressive increase in diameter. Simulations of AP propagation incorporating these morphological dynamics predicted bidirectional effects on AP conduction speed. The predictions were confirmed by electrophysiological experiments, revealing a phase of slowed down AP conduction, which is linked to the transient enlargement of the synaptic boutons, followed by a sustained increase in conduction speed that accompanies the axon shaft widening induced by high-frequency AP firing. Taken together, our study outlines a morphological plasticity mechanism for dynamically fine-tuning AP conduction velocity, which potentially has wide implications for the temporal transfer of information in the brain.


Asunto(s)
Potenciales de Acción/fisiología , Axones/fisiología , Conducción Nerviosa/fisiología , Terminales Presinápticos/fisiología , Algoritmos , Animales , Plasticidad de la Célula/fisiología , Hipocampo/citología , Hipocampo/fisiología , Ratones Endogámicos C57BL , Microscopía Confocal , Modelos Neurológicos , Plasticidad Neuronal/fisiología , Técnicas de Cultivo de Órganos , Imagen de Lapso de Tiempo/métodos
11.
J Neuroinflammation ; 12: 202, 2015 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-26538404

RESUMEN

BACKGROUND: Microglia cells are the resident macrophages of the central nervous system and are considered its first line of defense. In the normal brain, their ramified processes are highly motile, constantly scanning the surrounding brain tissue and rapidly moving towards sites of acute injury or danger signals. These microglial dynamics are thought to be critical for brain homeostasis. Under pathological conditions, microglial cells undergo "activation," which modifies many of their molecular and morphological properties. Investigations of the effects of activation on motility are limited and have given mixed results. In particular, little is known about how microglial motility is altered in epilepsy, which is characterized by a strong inflammatory reaction and microglial activation. METHODS: We used a mouse model of status epilepticus induced by kainate injections and time-lapse two-photon microscopy to image GFP-labeled microglia in acute hippocampal brain slices. We studied how microglial activation affected the motility of microglial processes, including basal motility, and their responses to local triggering stimuli. RESULTS: Our study reveals that microglial motility was largely preserved in kainate-treated animals, despite clear signs of microglial activation. In addition, whereas the velocities of microglial processes during basal scanning and towards a laser lesion were unaltered 48 h after status epilepticus, we observed an increase in the size of the territory scanned by single microglial processes during basal motility and an elevated directional velocity towards a pipette containing a purinergic agonist. CONCLUSIONS: Microglial activation differentially impacted the dynamic scanning behavior of microglia in response to specific acute noxious stimuli, which may be an important feature of the adaptive behavior of microglia during pathophysiological conditions.


Asunto(s)
Microglía/patología , Estado Epiléptico/patología , Animales , Receptor 1 de Quimiocinas CX3C , Movimiento Celular , Agonistas de Aminoácidos Excitadores , Hipocampo/patología , Técnicas In Vitro , Inflamación/patología , Ácido Kaínico , Activación de Macrófagos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Agonistas del Receptor Purinérgico P2Y/farmacología , Receptores de Quimiocina/genética , Receptores Purinérgicos P2Y12 , Estado Epiléptico/inducido químicamente
12.
J Neurosci ; 34(18): 6405-12, 2014 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-24790210

RESUMEN

Dendritic spines are basic units of neuronal information processing and their structure is closely reflected in their function. Defects in synaptic development are common in neurodevelopmental disorders, making detailed knowledge of age-dependent changes in spine morphology essential for understanding disease mechanisms. However, little is known about the functionally important fine-morphological structures, such as spine necks, due to the limited spatial resolution of conventional light microscopy. Using stimulated emission depletion microscopy (STED), we examined spine morphology at the nanoscale during normal development in mice, and tested the hypothesis that it is impaired in a mouse model of fragile X syndrome (FXS). In contrast to common belief, we find that, in normal development, spine heads become smaller, while their necks become wider and shorter, indicating that synapse compartmentalization decreases substantially with age. In the mouse model of FXS, this developmental trajectory is largely intact, with only subtle differences that are dependent on age and brain region. Together, our findings challenge current dogmas of both normal spine development as well as spine dysgenesis in FXS, highlighting the importance of super-resolution imaging approaches for elucidating structure-function relationships of dendritic spines.


Asunto(s)
Encéfalo/patología , Espinas Dendríticas/patología , Síndrome del Cromosoma X Frágil/patología , Procesamiento de Imagen Asistido por Computador , Microscopía Fluorescente/métodos , Neuronas/ultraestructura , Envejecimiento/patología , Animales , Proteínas Bacterianas/genética , Modelos Animales de Enfermedad , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteínas Luminiscentes/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/patología , Estadísticas no Paramétricas
13.
J Neurosci ; 33(47): 18672-85, 2013 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-24259588

RESUMEN

The immunoreceptor-associated protein CD3ζ is known for its role in immunity and has also been implicated in neuronal development and synaptic plasticity. However, the mechanism by which CD3ζ regulates synaptic transmission remains unclear. In this study, we showed that mice lacking CD3ζ exhibited defects in spatial learning and memory as examined by the Barnes maze and object location memory tasks. Given that peripheral T cells have been shown to support cognitive functions and neural plasticity, we generated CD3ζ(-/-) mice in which the peripheral T cells were repopulated to a normal level by syngeneic bone marrow transplantation. Using this approach, we showed that T-cell replenishment in CD3ζ(-/-) mice did not restore spatial memory defects, suggesting that the cognitive deficits in CD3ζ(-/-) mice were most likely mediated through a T-cell-independent mechanism. In support of this idea, we showed that CD3ζ proteins were localized to glutamatergic postsynaptic sites, where they interacted with the NMDAR subunit GluN2A. Loss of CD3ζ in brain decreased GluN2A-PSD95 association and GluN2A synaptic localization. This effect was accompanied by a reduced interaction of GluN2A with the key NMDAR downstream signaling protein calcium/calmodulin-dependent protein kinase II (CaMKII). Using the glycine-induced, NMDA-dependent form of chemical long-term potentiation (LTP) in cultured cortical neurons, we showed that CD3ζ was required for activity-dependent CaMKII autophosphorylation and for the synaptic recruitment of the AMPAR subunit GluA1. Together, these results support the model that the procognitive function of CD3ζ may be mediated through its involvement in the NMDAR downstream signaling pathway leading to CaMKII-dependent LTP induction.


Asunto(s)
Complejo CD3/metabolismo , Trastornos de la Memoria/genética , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Linfocitos T/patología , Animales , Trasplante de Médula Ósea , Complejo CD3/genética , Células Cultivadas , Corteza Cerebral/citología , Modelos Animales de Enfermedad , Embrión de Mamíferos , Regulación de la Expresión Génica/genética , Glicina/farmacología , Antígenos Comunes de Leucocito/genética , Aprendizaje por Laberinto , Trastornos de la Memoria/fisiopatología , Trastornos de la Memoria/cirugía , Memoria a Corto Plazo/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/citología , Neuronas/efectos de los fármacos , Reconocimiento en Psicología/fisiología
14.
J Mol Neurosci ; 46(2): 431-41, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21809042

RESUMEN

Immune signaling and neuroinflammatory mediators have recently emerged as influential variables that regulate neural precursor/stem cell (NPC) behavior and function. In this study, we investigated whether the signaling adaptor protein CD3ζ, a transmembrane protein involved in T cell differentiation and function and recently shown to regulate neuronal development in the central nervous system (CNS), may have a role in NPC differentiation. We analyzed the expression profile of CD3ζ in embryonic rat brain during neurogenic periods and in neurosphere-derived neural cells, and we investigated the action of CD3ζ on cell differentiation. We found that CD3ζ expression coincided with neuronal commitment, but its forced expression in NPCs prevented the production of neurons and oligodendrocytes, but not astroglial cells. This blockade of neuronal differentiation was operated through an ITAM-independent mechanism, but required the Asp36 of the CD3ζ transmembrane domain involved in membrane receptor interaction. Together, our findings show that ectopic CD3ζ expression in NPCs impaired their normal cell-fate specification and suggest that variations of CD3ζ expression in the developing CNS might result in neurodevelopmental anomalies.


Asunto(s)
Complejo CD3/fisiología , Linaje de la Célula , Regulación del Desarrollo de la Expresión Génica , Proteínas del Tejido Nervioso/fisiología , Células-Madre Neurales/enzimología , Neurogénesis/fisiología , Sustitución de Aminoácidos , Animales , Complejo CD3/biosíntesis , Complejo CD3/química , Complejo CD3/genética , Supervivencia Celular , Células Cultivadas/enzimología , Inducción Enzimática , Femenino , Edad Gestacional , Hipocampo/citología , Hipocampo/embriología , Microscopía Fluorescente , Mutagénesis Sitio-Dirigida , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Células-Madre Neurales/patología , Neuronas/citología , Neuronas/enzimología , Bulbo Olfatorio/embriología , Bulbo Olfatorio/enzimología , Embarazo , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/fisiología , Transfección
15.
J Neurochem ; 119(4): 708-22, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21895656

RESUMEN

Recent studies have highlighted the key role of the immune protein CD3ζ in the maturation of neuronal circuits in the CNS. Yet, the upstream signals that might recruit and activate CD3ζ in neurons are still unknown. In this study, we show that CD3ζ functions early in neuronal development and we identify ephrinA1-dependent EphA4 receptor activation as an upstream regulator of CD3ζ. When newly born neurons are still spherical, before neurite extension, we found a transient CD3ζ aggregation at the cell periphery matching the initiation site of the future neurite. This accumulation of CD3ζ correlated with a stimulatory effect on filopodia extension via a Rho-GEF Vav2 pathway and a repression of neurite outgrowth. Conversely, cultured neurons lacking CD3ζ isolated from CD3ζ(-/-) mice showed a decreased number of filopodia and an enhanced neurite number. Stimulation with ephrinA1 induces the translocation of both CD3ζ and its activated effector molecules, ZAP-70/Syk tyrosine kinases, to EphA4 receptor clusters. EphrinA1-induced growth cone collapse was abrogated in CD3ζ(-/-) neurons and was markedly reduced by ZAP-70/Syk inhibition. Moreover, ephrinA1-induced ZAP-70/Syk activation was inhibited in CD3ζ(-/-) neurons. Altogether, our data suggest that CD3ζ mediates the ZAP-70/Syk kinase activation triggered by ephrinA-activated pathway to regulate early neuronal morphogenesis.


Asunto(s)
Complejo CD3/metabolismo , Efrinas/metabolismo , Neuritas/fisiología , Neuronas/fisiología , Transducción de Señal/fisiología , Proteína Tirosina Quinasa ZAP-70/metabolismo , Animales , Animales Recién Nacidos , Encéfalo/citología , Complejo CD3/genética , Células COS , Células Cultivadas , Chlorocebus aethiops , Embrión de Mamíferos , Efrinas/genética , Efrinas/farmacología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Inmunoprecipitación/métodos , Ratones , Ratones Noqueados , Células-Madre Neurales , Neuronas/citología , Neuronas/efectos de los fármacos , Seudópodos/efectos de los fármacos , Seudópodos/fisiología , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Transfección/métodos , Tubulina (Proteína)/metabolismo , Proteína Tirosina Quinasa ZAP-70/genética
16.
Neurosci Res ; 70(2): 172-82, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21354221

RESUMEN

An increasing number of data involve immunoreceptors in brain development, synaptic plasticity and behavior. However it has yet to be determined whether these proteins in fact transmit an immunoreceptor-like signal in non-hematopoietic neuronal cells. The recruitment and activation of the Syk family tyrosine kinases, Syk and ZAP-70, being a critical step in this process, we conducted a thorough analysis of Syk/ZAP-70 expression pattern in nervous tissues. Syk/ZAP-70 is present in neurons of different structures including the cerebellum, the hippocampus, the visual system and the olfactory system. During the olfactory system ontogeny the protein is detected from the 16th embryonic day and persists in adulthood. Importantly, Syk was phosphorylated on tyrosine residues representative of an active form of the kinase in specialized neuronal subpopulations comprising rostral migratory stream neuronal progenitor cells, hippocampal pyramidal cells, retinal ganglion cells and cerebellar granular cells. Phospho-Syk staining was also observed in synapse-rich regions such as the olfactory bulb glomeruli and the retina inner plexiform layer. Furthermore, our work on cultured primary hippoccampal neurons indicates that as for hematopoietic cells, Syk phosphorylation is readily induced upon pervanadate treatment. Therefore, Syk appears to be a serious candidate in connecting immunoreceptors to downstream adaptor/effector molecules in neurons.


Asunto(s)
Encéfalo/enzimología , Encéfalo/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neuronas/enzimología , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal/fisiología , Animales , Animales Recién Nacidos , Células Cultivadas , Cerebelo/citología , Cerebelo/embriología , Cerebelo/enzimología , Hipocampo/citología , Hipocampo/embriología , Hipocampo/enzimología , Péptidos y Proteínas de Señalización Intracelular/genética , Neuronas/citología , Neuronas/metabolismo , Bulbo Olfatorio/citología , Bulbo Olfatorio/embriología , Bulbo Olfatorio/enzimología , Fosforilación/fisiología , Proteínas Tirosina Quinasas/biosíntesis , Proteínas Tirosina Quinasas/genética , Ratas , Ratas Wistar , Retina/citología , Retina/embriología , Retina/enzimología , Organismos Libres de Patógenos Específicos , Células Madre/citología , Células Madre/enzimología , Células Madre/metabolismo , Quinasa Syk , Proteína Tirosina Quinasa ZAP-70/biosíntesis , Proteína Tirosina Quinasa ZAP-70/genética , Proteína Tirosina Quinasa ZAP-70/metabolismo
17.
Mol Biol Cell ; 19(6): 2444-56, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18367546

RESUMEN

A novel idea is emergxsing that a large molecular repertoire is common to the nervous and immune systems, which might reflect the existence of novel neuronal functions for immune molecules in the brain. Here, we show that the transmembrane adaptor signaling protein CD3zeta, first described in the immune system, has a previously uncharacterized role in regulating neuronal development. Biochemical and immunohistochemical analyses of the rat brain and cultured neurons showed that CD3zeta is mainly expressed in neurons. Distribution of CD3zeta in developing cultured hippocampal neurons, as determined by immunofluorescence, indicates that CD3zeta is preferentially associated with the somatodendritic compartment as soon as the dendrites initiate their differentiation. At this stage, CD3zeta was selectively concentrated at dendritic filopodia and growth cones, actin-rich structures involved in neurite growth and patterning. siRNA-mediated knockdown of CD3zeta in cultured neurons or overexpression of a loss-of-function CD3zeta mutant lacking the tyrosine phosphorylation sites in the immunoreceptor tyrosine-based activation motifs (ITAMs) increased dendritic arborization. Conversely, activation of endogenous CD3zeta by a CD3zeta antibody reduced the size of the dendritic arbor. Altogether, our findings reveal a novel role for CD3zeta in the nervous system, suggesting its contribution to dendrite development through ITAM-based mechanisms.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Complejo CD3/metabolismo , Dendritas/metabolismo , Actinas/metabolismo , Animales , Anticuerpos/farmacología , Encéfalo/citología , Encéfalo/metabolismo , Células COS , Calcio/metabolismo , Células Cultivadas , Chlorocebus aethiops , Dendritas/efectos de los fármacos , Dendritas/enzimología , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Masculino , Mutación/genética , Neuritas/efectos de los fármacos , Neuritas/enzimología , Fosforilación/efectos de los fármacos , Fosfotirosina/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Seudópodos/efectos de los fármacos , Seudópodos/metabolismo , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Quinasa Syk , Proteína Tirosina Quinasa ZAP-70/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...