Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pest Manag Sci ; 78(1): 116-125, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34453401

RESUMEN

BACKGROUND: Economic injury level (EIL) and economic threshold (ET) are customary tools for integrated pest management. Cacopsylla pyri L. is a major pest in pear orchards. The aim of this work was to establish EIL and ET for the optimization of the use of insecticides to control this psyllid, considering biocontrol and two spraying strategies (low-toxicity versus broad spectrum chemicals). This research was conducted over 4 years in five commercial pear, cv. Ercolini, orchards in south-eastern Spain. RESULTS: Psyllids and ant populations were followed using periodic sampling, and the russet on fruits was quantified. The effect of spray intensity and ant exclusion on psyllid abundance and yield were also tested: both had a significant effect on the cumulative number of C. pyri (CNP), yield and fruit weight. Yield was found to be negatively correlated with CNP. The russet index (RI) increased in a sigmoidal fashion as a function of CNP, being significantly higher with than without ant exclusion. The commercial categorization of fruits was explained satisfactorily as a function of CNP and the cumulative number of ants (CNA). The quantitative EIL was established at a CNP of 427.2 for spraying with paraffinic oil and 425.7 for abamectin. As for the cosmetic EIL, when CNA was zero, this EIL was 24.2, at a CNP of 16.6 for spraying with paraffinic oil or abamectin. CONCLUSIONS: The use of products of low toxicity, for the conservation of ants, is expected to increase ET and, thus, reduce the intensity of spraying. © 2021 Society of Chemical Industry.


Asunto(s)
Hormigas , Hemípteros , Insecticidas , Pyrus , Animales , España
2.
Front Cell Neurosci ; 15: 668286, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34262437

RESUMEN

Despite advancements in the radiotherapeutic management of brain malignancies, resultant sequelae include persistent cognitive dysfunction in the majority of survivors. Defining the precise causes of normal tissue toxicity has proven challenging, but the use of preclinical rodent models has suggested that reductions in neurogenesis and microvascular integrity, impaired synaptic plasticity, increased inflammation, and alterations in neuronal structure are contributory if not causal. As such, strategies to reverse these persistent radiotherapy-induced neurological disorders represent an unmet medical need. AM251, a cannabinoid receptor 1 reverse agonist known to facilitate adult neurogenesis and synaptic plasticity, may help to ameliorate radiation-induced CNS impairments. To test this hypothesis, three treatment paradigms were used to evaluate the efficacy of AM251 to ameliorate radiation-induced learning and memory deficits along with disruptions in mood at 4 and 12 weeks postirradiation. Results demonstrated that acute (four weekly injections) and chronic (16 weekly injections) AM251 treatments (1 mg/kg) effectively alleviated cognitive and mood dysfunction in cranially irradiated mice. The beneficial effects of AM251 were exemplified by improved hippocampal- and cortical-dependent memory function on the novel object recognition and object in place tasks, while similar benefits on mood were shown by reductions in depressive- and anxiety-like behaviors on the forced swim test and elevated plus maze. The foregoing neurocognitive benefits were associated with significant increases in newly born (doublecortin+) neurons (1.7-fold), hippocampal neurogenesis (BrdU+/NeuN+mature neurons, 2.5-fold), and reduced expression of the inflammatory mediator HMGB (1.2-fold) in the hippocampus of irradiated mice. Collectively, these findings indicate that AM251 ameliorates the effects of clinically relevant cranial irradiation where overall neurological benefits in memory and mood coincided with increased hippocampal cell proliferation, neurogenesis, and reduced expression of proinflammatory markers.

3.
Neurobiol Dis ; 151: 105252, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33418069

RESUMEN

Galactic cosmic radiation (GCR), composed of highly energetic and fully ionized atomic nuclei, produces diverse deleterious effects on the body. In researching the neurological risks of GCR exposures, including during human spaceflight, various ground-based single-ion GCR irradiation paradigms induce differential disruptions of cellular activity and overall behavior. However, it remains less clear how irradiation comprising a mix of multiple ions, more accurately recapitulating the space GCR environment, impacts the central nervous system. We therefore examined how mixed-ion GCR irradiation (two similar 5-6 beam combinations of protons, helium, oxygen, silicon and iron ions) influenced neuronal connectivity, functional generation of activity within neural circuits and cognitive behavior in mice. In electrophysiological recordings we find that space-relevant doses of mixed-ion GCR preferentially alter hippocampal inhibitory neurotransmission and produce related disruptions in the local field potentials of hippocampal oscillations. Such underlying perturbation in hippocampal network activity correspond with perturbed learning, memory and anxiety behavior.


Asunto(s)
Radiación Cósmica/efectos adversos , Hipocampo/efectos de la radiación , Transmisión Sináptica/efectos de la radiación , Animales , Conducta Animal/efectos de la radiación , Disfunción Cognitiva/etiología , Masculino , Ratones , Ratones Endogámicos C57BL
4.
Front Behav Neurosci ; 14: 535885, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33192361

RESUMEN

The radiation fields in space define tangible risks to the health of astronauts, and significant work in rodent models has clearly shown a variety of exposure paradigms to compromise central nervous system (CNS) functionality. Despite our current knowledge, sex differences regarding the risks of space radiation exposure on cognitive function remain poorly understood, which is potentially problematic given that 30% of astronauts are women. While work from us and others have demonstrated pronounced cognitive decrements in male mice exposed to charged particle irradiation, here we show that female mice exhibit significant resistance to adverse neurocognitive effects of space radiation. The present findings indicate that male mice exposed to low doses (≤30 cGy) of energetic (400 MeV/n) helium ions (4He) show significantly higher levels of neuroinflammation and more extensive cognitive deficits than females. Twelve weeks following 4He ion exposure, irradiated male mice demonstrated significant deficits in object and place recognition memory accompanied by activation of microglia, marked upregulation of hippocampal Toll-like receptor 4 (TLR4), and increased expression of the pro-inflammatory marker high mobility group box 1 protein (HMGB1). Additionally, we determined that exposure to 4He ions caused a significant decline in the number of dendritic branch points and total dendritic length along with the hippocampus neurons in female mice. Interestingly, only male mice showed a significant decline of dendritic spine density following irradiation. These data indicate that fundamental differences in inflammatory cascades between male and female mice may drive divergent CNS radiation responses that differentially impact the structural plasticity of neurons and neurocognitive outcomes following cosmic radiation exposure.

5.
Radiat Res ; 193(5): 407-424, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32134362

RESUMEN

Radiotherapy, surgery and the chemotherapeutic agent temozolomide (TMZ) are frontline treatments for glioblastoma multiforme (GBM). However beneficial, GBM treatments nevertheless cause anxiety or depression in nearly 50% of patients. To further understand the basis of these neurological complications, we investigated the effects of combined radiotherapy and TMZ chemotherapy (combined treatment) on neurological impairments using a mouse model. Five weeks after combined treatment, mice displayed anxiety-like behaviors, and at 15 weeks both anxiety- and depression-like behaviors were observed. Relevant to the known roles of the serotonin axis in mood disorders, we found that 5HT1A serotonin receptor levels were decreased by ∼50% in the hippocampus at both early and late time points, and a 37% decrease in serotonin levels was observed at 15 weeks postirradiation. Furthermore, chronic treatment with the selective serotonin reuptake inhibitor fluoxetine was sufficient for reversing combined treatment-induced depression-like behaviors. Combined treatment also elicited a transient early increase in activated microglia in the hippocampus, suggesting therapy-induced neuroinflammation that subsided by 15 weeks. Together, the results of this study suggest that interventions targeting the serotonin axis may help ameliorate certain neurological side effects associated with the clinical management of GBM to improve the overall quality of life for cancer patients.


Asunto(s)
Neurología , Radioterapia/efectos adversos , Temozolomida/efectos adversos , Animales , Ansiedad/diagnóstico , Ansiedad/etiología , Ansiedad/metabolismo , Conducta Animal/efectos de los fármacos , Conducta Animal/efectos de la radiación , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/radioterapia , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/patología , Región CA1 Hipocampal/efectos de la radiación , Terapia Combinada/efectos adversos , Depresión/inducido químicamente , Depresión/etiología , Glioblastoma/tratamiento farmacológico , Glioblastoma/radioterapia , Masculino , Ratones , Neuronas/efectos de los fármacos , Neuronas/patología , Neuronas/efectos de la radiación , Receptor de Serotonina 5-HT1A/metabolismo , Serotonina/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación , Temozolomida/uso terapéutico
6.
Stem Cells Transl Med ; 9(1): 93-105, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31568685

RESUMEN

Cranial radiotherapy, although beneficial for the treatment of brain tumors, inevitably leads to normal tissue damage that can induce unintended neurocognitive complications that are progressive and debilitating. Ionizing radiation exposure has also been shown to compromise the structural integrity of mature neurons throughout the brain, an effect believed to be at least in part responsible for the deterioration of cognitive health. Past work has shown that cranially transplanted human neural stem cells (hNSCs) or their extracellular vesicles (EVs) afforded long-term beneficial effects on many of these cognitive decrements. To provide additional insight into the potential neuroprotective mechanisms of cell-based regenerative strategies, we have analyzed hippocampal neurons for changes in structural integrity and synaptic remodeling after unilateral and bilateral transplantation of hNSCs or EVs derived from those same cells. Interestingly, hNSCs and EVs similarly afforded protection to host neurons, ameliorating the impact of irradiation on dendritic complexity and spine density for neurons present in both the ipsilateral and contralateral hippocampi 1 month following irradiation and transplantation. These morphometric improvements were accompanied by increased levels of glial cell-derived growth factor and significant attenuation of radiation-induced increases in postsynaptic density protein 95 and activated microglia were found ipsi- and contra-lateral to the transplantation sites of the irradiated hippocampus treated with hNSCs or hNSC-derived EVs. These findings document potent far-reaching neuroprotective effects mediated by grafted stem cells or EVs adjacent and distal to the site of transplantation and support their potential as therapeutic agents to counteract the adverse effects of cranial irradiation.


Asunto(s)
Irradiación Craneana/efectos adversos , Vesículas Extracelulares/trasplante , Células-Madre Neurales/trasplante , Animales , Irradiación Craneana/métodos , Humanos , Masculino , Ratas , Ratas Desnudas
7.
eNeuro ; 6(4)2019.
Artículo en Inglés | MEDLINE | ID: mdl-31383727

RESUMEN

As NASA prepares for a mission to Mars, concerns regarding the health risks associated with deep space radiation exposure have emerged. Until now, the impacts of such exposures have only been studied in animals after acute exposures, using dose rates ∼1.5×105 higher than those actually encountered in space. Using a new, low dose-rate neutron irradiation facility, we have uncovered that realistic, low dose-rate exposures produce serious neurocognitive complications associated with impaired neurotransmission. Chronic (6 month) low-dose (18 cGy) and dose rate (1 mGy/d) exposures of mice to a mixed field of neutrons and photons result in diminished hippocampal neuronal excitability and disrupted hippocampal and cortical long-term potentiation. Furthermore, mice displayed severe impairments in learning and memory, and the emergence of distress behaviors. Behavioral analyses showed an alarming increase in risk associated with these realistic simulations, revealing for the first time, some unexpected potential problems associated with deep space travel on all levels of neurological function.


Asunto(s)
Cognición/efectos de la radiación , Radiación Cósmica/efectos adversos , Hipocampo/efectos de la radiación , Neutrones/efectos adversos , Fotones/efectos adversos , Transmisión Sináptica/efectos de la radiación , Animales , Ansiedad/etiología , Depresión/etiología , Extinción Psicológica/efectos de la radiación , Masculino , Memoria/efectos de la radiación , Ratones Endogámicos C57BL , Neuronas/efectos de la radiación , Conducta Social
8.
Glia ; 67(11): 2092-2106, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30957306

RESUMEN

In the central nervous system (CNS), myelin sheaths around axons are formed by glial cells named oligodendrocytes (OLs). In turn, OLs are generated by oligodendrocyte precursor cells (OPCs) during postnatal development and in adults, according to a process that depends on the proliferation and differentiation of these progenitors. The maturation of OL lineage cells as well as myelination by OLs are complex and highly regulated processes in the CNS. OPCs and OLs express an array of receptors for neurotransmitters, in particular for the two main CNS neurotransmitters glutamate and GABA, and are therefore endowed with the capacity to respond to neuronal activity. Initial studies in cell cultures demonstrated that both glutamate and GABA signaling mechanisms play important roles in OL lineage cell development and function. However, much remains to be learned about the communication of glutamatergic and GABAergic neurons with oligodendroglia in vivo. This review focuses on recent major advances in our understanding of the neuron-oligodendroglia communication mediated by glutamate and GABA in the CNS, and highlights the present controversies in the field. We discuss the expression, activation modes and potential roles of synaptic and extrasynaptic receptors along OL lineage progression. We review the properties of OPC synaptic connectivity with presynaptic glutamatergic and GABAergic neurons in the brain and consider the implication of glutamate and GABA signaling in activity-driven adaptive myelination.


Asunto(s)
Axones/fisiología , Vaina de Mielina/fisiología , Neuronas/fisiología , Oligodendroglía/fisiología , Animales , Diferenciación Celular/fisiología , Humanos , Células Precursoras de Oligodendrocitos/fisiología
9.
Exp Neurol ; 305: 44-55, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29540322

RESUMEN

Of the many perils associated with deep space travel to Mars, neurocognitive complications associated with cosmic radiation exposure are of particular concern. Despite these realizations, whether and how realistic doses of cosmic radiation cause cognitive deficits and neuronal circuitry alterations several months after exposure remains unclear. In addition, even less is known about the temporal progression of cosmic radiation-induced changes transpiring over the duration of a time period commensurate with a flight to Mars. Here we show that rodents exposed to the second most prevalent radiation type in space (i.e. helium ions) at low, realistic doses, exhibit significant hippocampal and cortical based cognitive decrements lasting 1 year after exposure. Cosmic-radiation-induced impairments in spatial, episodic and recognition memory were temporally coincident with deficits in cognitive flexibility and reduced rates of fear extinction, elevated anxiety and depression like behavior. At the circuit level, irradiation caused significant changes in the intrinsic properties (resting membrane potential, input resistance) of principal cells in the perirhinal cortex, a region of the brain implicated by our cognitive studies. Irradiation also resulted in persistent decreases in the frequency and amplitude of the spontaneous excitatory postsynaptic currents in principal cells of the perirhinal cortex, as well as a reduction in the functional connectivity between the CA1 of the hippocampus and the perirhinal cortex. Finally, increased numbers of activated microglia revealed significant elevations in neuroinflammation in the perirhinal cortex, in agreement with the persistent nature of the perturbations in key neuronal networks after cosmic radiation exposure. These data provide new insights into cosmic radiation exposure, and reveal that even sparsely ionizing particles can disrupt the neural circuitry of the brain to compromise cognitive function over surprisingly protracted post-irradiation intervals.


Asunto(s)
Disfunción Cognitiva/fisiopatología , Radiación Cósmica/efectos adversos , Potenciales Postsinápticos Excitadores/efectos de la radiación , Conducta Exploratoria/efectos de la radiación , Red Nerviosa/fisiopatología , Red Nerviosa/efectos de la radiación , Animales , Disfunción Cognitiva/etiología , Disfunción Cognitiva/psicología , Potenciales Postsinápticos Excitadores/fisiología , Conducta Exploratoria/fisiología , Hipocampo/fisiopatología , Hipocampo/efectos de la radiación , Masculino , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Ratones , Ratones Endogámicos C57BL , Corteza Perirrinal/fisiopatología , Corteza Perirrinal/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA